Skip to content

Latest commit

 

History

History
48 lines (35 loc) · 2.32 KB

EXPORT_MODEL.md

File metadata and controls

48 lines (35 loc) · 2.32 KB

模型导出

训练得到一个满足要求的模型后,如果想要将该模型接入到C++预测库或者Serving服务,需要通过tools/export_model.py导出该模型。

启动参数说明

FLAG 用途 默认值 备注
-c 指定配置文件 None
--output_dir 模型保存路径 ./output 模型默认保存在output/配置文件名/路径下

使用示例

使用训练/评估/推断中训练得到的模型进行试用,脚本如下

# 导出FasterRCNN模型, 模型中data层默认的shape为3x800x1333
python tools/export_model.py -c configs/faster_rcnn_r50_1x.yml \
        --output_dir=./inference_model \
        -o weights=output/faster_rcnn_r50_1x/model_final \

预测模型会导出到inference_model/faster_rcnn_r50_1x目录下,模型名和参数名分别为__model____params__

设置导出模型的输入大小

使用Fluid-TensorRT进行预测时,由于<=TensorRT 5.1的版本仅支持定长输入,保存模型的data层的图片大小需要和实际输入图片大小一致。而Fluid C++预测引擎没有此限制。可通过设置TestFeed的image_shape可以修改保存模型中的输入图片大小。示例如下:

# 导出FasterRCNN模型,输入是3x640x640
python tools/export_model.py -c configs/faster_rcnn_r50_1x.yml \
        --output_dir=./inference_model \
        -o weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \
           FasterRCNNTestFeed.image_shape=[3,640,640]

# 导出YOLOv3模型,输入是3x320x320
python tools/export_model.py -c configs/yolov3_darknet.yml \
        --output_dir=./inference_model \
        -o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar \
           YoloTestFeed.image_shape=[3,320,320]

# 导出SSD模型,输入是3x300x300
python tools/export_model.py -c configs/ssd/ssd_mobilenet_v1_voc.yml \
        --output_dir=./inference_model \
        -o weights= https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar \
           SSDTestFeed.image_shape=[3,300,300]