diff --git a/daft/dataframe/__init__.py b/daft/dataframe/__init__.py index b3287bc24c..e2f916d8a4 100644 --- a/daft/dataframe/__init__.py +++ b/daft/dataframe/__init__.py @@ -1,5 +1,5 @@ from __future__ import annotations -from .dataframe import DataFrame +from .dataframe import DataFrame, GroupedDataFrame -__all__ = ["DataFrame"] +__all__ = ["DataFrame", "GroupedDataFrame"] diff --git a/docs/source/api_docs/groupby.rst b/docs/source/api_docs/groupby.rst index e1a25a150c..9b2804ae0f 100644 --- a/docs/source/api_docs/groupby.rst +++ b/docs/source/api_docs/groupby.rst @@ -5,14 +5,5 @@ When performing aggregations such as sum, mean and count, you may often want to Calling :meth:`df.groupby() ` returns a ``GroupedDataFrame`` object which is a view of the original DataFrame but with additional context on which keys to group on. You can then call various aggregation methods to run the aggregation within each group, returning a new DataFrame. -.. currentmodule:: daft - -.. autosummary:: - :nosignatures: - :toctree: doc_gen/dataframe_methods - - daft.dataframe.dataframe.GroupedDataFrame.sum - daft.dataframe.dataframe.GroupedDataFrame.mean - daft.dataframe.dataframe.GroupedDataFrame.min - daft.dataframe.dataframe.GroupedDataFrame.max - daft.dataframe.dataframe.GroupedDataFrame.agg +.. autoclass:: daft.dataframe.GroupedDataFrame + :members: