-
Notifications
You must be signed in to change notification settings - Fork 0
/
collect_env.py
executable file
·183 lines (151 loc) · 5.93 KB
/
collect_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import importlib
import numpy as np
import os
import re
import subprocess
import sys
from collections import defaultdict
import PIL
import torch
import torchvision
from tabulate import tabulate
__all__ = ["collect_env_info"]
def collect_torch_env():
try:
import torch.__config__
return torch.__config__.show()
except ImportError:
# compatible with older versions of pytorch
from torch.utils.collect_env import get_pretty_env_info
return get_pretty_env_info()
def get_env_module():
var_name = "DETECTRON2_ENV_MODULE"
return var_name, os.environ.get(var_name, "<not set>")
def detect_compute_compatibility(CUDA_HOME, so_file):
try:
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
if os.path.isfile(cuobjdump):
output = subprocess.check_output(
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
)
output = output.decode("utf-8").strip().split("\n")
sm = []
for line in output:
line = re.findall(r"\.sm_[0-9]*\.", line)[0]
sm.append(line.strip("."))
sm = sorted(set(sm))
return ", ".join(sm)
else:
return so_file + "; cannot find cuobjdump"
except Exception:
# unhandled failure
return so_file
def collect_env_info():
has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM
torch_version = torch.__version__
# NOTE: the use of CUDA_HOME and ROCM_HOME requires the CUDA/ROCM build deps, though in
# theory detectron2 should be made runnable with only the corresponding runtimes
from torch.utils.cpp_extension import CUDA_HOME
has_rocm = False
if tuple(map(int, torch_version.split(".")[:2])) >= (1, 5):
from torch.utils.cpp_extension import ROCM_HOME
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
has_rocm = True
has_cuda = has_gpu and (not has_rocm)
data = []
data.append(("sys.platform", sys.platform))
data.append(("Python", sys.version.replace("\n", "")))
data.append(("numpy", np.__version__))
try:
import detectron2 # noqa
data.append(
("detectron2", detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__))
)
except ImportError:
data.append(("detectron2", "failed to import"))
try:
from detectron2 import _C
except ImportError:
data.append(("detectron2._C", "failed to import"))
# print system compilers when extension fails to build
if sys.platform != "win32": # don't know what to do for windows
try:
# this is how torch/utils/cpp_extensions.py choose compiler
cxx = os.environ.get("CXX", "c++")
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True)
cxx = cxx.decode("utf-8").strip().split("\n")[0]
except subprocess.SubprocessError:
cxx = "Not found"
data.append(("Compiler", cxx))
if has_cuda and CUDA_HOME is not None:
try:
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True)
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1]
except subprocess.SubprocessError:
nvcc = "Not found"
data.append(("CUDA compiler", nvcc))
else:
# print compilers that are used to build extension
data.append(("Compiler", _C.get_compiler_version()))
data.append(("CUDA compiler", _C.get_cuda_version())) # cuda or hip
if has_cuda:
data.append(
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, _C.__file__))
)
data.append(get_env_module())
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
data.append(("PyTorch debug build", torch.version.debug))
data.append(("GPU available", has_gpu))
if has_gpu:
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
devices[torch.cuda.get_device_name(k)].append(str(k))
for name, devids in devices.items():
data.append(("GPU " + ",".join(devids), name))
if has_rocm:
data.append(("ROCM_HOME", str(ROCM_HOME)))
else:
data.append(("CUDA_HOME", str(CUDA_HOME)))
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
if cuda_arch_list:
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
data.append(("Pillow", PIL.__version__))
try:
data.append(
(
"torchvision",
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__),
)
)
if has_cuda:
try:
torchvision_C = importlib.util.find_spec("torchvision._C").origin
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
data.append(("torchvision arch flags", msg))
except ImportError:
data.append(("torchvision._C", "failed to find"))
except AttributeError:
data.append(("torchvision", "unknown"))
try:
import fvcore
data.append(("fvcore", fvcore.__version__))
except ImportError:
pass
try:
import cv2
data.append(("cv2", cv2.__version__))
except ImportError:
pass
env_str = tabulate(data) + "\n"
env_str += collect_torch_env()
return env_str
if __name__ == "__main__":
try:
import detectron2 # noqa
except ImportError:
print(collect_env_info())
else:
from detectron2.utils.collect_env import collect_env_info
print(collect_env_info())