-
Notifications
You must be signed in to change notification settings - Fork 0
/
lane_detection_video.py
62 lines (50 loc) · 1.79 KB
/
lane_detection_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import matplotlib.pylab as plt
import cv2
import numpy as np
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
#channel_count = img.shape[2]
#match_mask_color = (255,) * channel_count
match_mask_color = 255
cv2.fillPoly(mask, vertices, match_mask_color)
plt.imshow(mask)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def draw_lines(img, lines):
img=np.copy(img)
blank_image=np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8 )
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), 3)
img = cv2.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
def process(image):
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices = [
(0, height/1.4),
(width/3, height/2), (width - width/3, height/2),
(width, height/1.4)
]
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
canny_image = cv2.Canny(gray_image, 80, 200)
cropped_image = region_of_interest(canny_image, np.array([region_of_interest_vertices], np.int32),)
lines = cv2.HoughLinesP(cropped_image,
rho=6,
theta=np.pi/180,
threshold=50,
lines=np.array([]),
minLineLength=40,
maxLineGap=25)
image_with_lines = draw_lines(image, lines)
#will not use matplotlib for vidoe processing
return image_with_lines
cap = cv2.VideoCapture('videoplayback_Trim.mp4')
while(cap.isOpened()):
ret, frame = cap.read()
frame = process(frame)
cv2.imshow('test',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()