forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperplexity.py
180 lines (130 loc) · 7.16 KB
/
perplexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
import json
import math
import os
import sys
import torch
import torch.nn.functional as F
'''
Passing in model, cache, tokenizer is a total hack because we don't want to have to reinitialize (or move all the globals into a shared state model)
'''
class Perplexity:
def __init__(self, method="default", model = None, cache = None, tokenizer = None):
# This needs to be loaded by calling .load()
self.dataset_chunks = []
self.model = model
self.cache = cache
self.tokenizer = tokenizer
self._begin()
def _begin(self):
if self.cache is None:
self.cache = ExLlamaCache(self.model)
else:
self.cache.current_seq_len = 0
def _next_logits(self, input_ids, apply_lora, last_id_only = True):
# n_logits = []
# a = 0
# while a < input_ids.shape[-1]:
# b = min(input_ids.shape[-1], a + 2048)
# n_logits.append(self.model.forward(input_ids[:, a:b], self.cache, last_id_only, lora = apply_lora))
# a = b
#
# return torch.cat(n_logits, dim = 1)
return self.model.forward(input_ids, self.cache, last_id_only, lora = apply_lora)
def _tokenize(self, text):
return self.tokenizer.encode(text)
# Load raw dataset from a text file and tokenize into chunks. Each chunk can optionally truncated to allow for
# evaluating the same data at different sequence lengths
def load(self, dataset_path, chunk_size, chunk_truncate = None, overlap = 0, minlength = 0, json_key = "text"):
file_extension = os.path.splitext(dataset_path)[1]
# JSON format: Returned chunks may be of variable length, with each chunk representing one list item
if file_extension == '.jsonl' or file_extension == '.json':
with open(dataset_path) as f:
for line in f:
example = json.loads(line)[json_key]
if len(example) > minlength:
chunk = self._tokenize(example)
chunk = chunk[:, :chunk_size]
if chunk_truncate is not None: chunk = chunk[:, :chunk_truncate]
self.dataset_chunks.append(chunk)
# Raw Text: Returned chunks are fixed length windows of the entire tokenized dataset
else:
with open(dataset_path, encoding="utf-8") as f:
text = f.read()
tokens = self._tokenize(text)
# overlap shouldn't be bigger than the context, also need at least one token for predicting last...
if overlap >= chunk_size:
overlap = chunk_size-2
# We can't use torch.chunks since it want's to split things into equal sized chunks. Instead, let's do our own chunking
start = 0
while start < tokens.size(1):
chunk = tokens[:, start:start + chunk_size]
start += chunk_size - overlap
if chunk_truncate is not None: chunk = chunk[:, :chunk_truncate]
self.dataset_chunks.append(chunk)
def test(self, chunk_limit = sys.maxsize, lora = None, tag = "", ppl_token = False):
if not self.dataset_chunks:
sys.exit(" xx ERROR: Empty dataset!")
print(f" -- Testing {min(len(self.dataset_chunks), chunk_limit)} chunks", end="")
sys.stdout.flush()
logprob_sum = 0.0
logprob_count = 0
chunk_count = 0
for chunk in self.dataset_chunks:
self._begin()
input_ids = chunk[:, :-1]
target_ids = chunk[:, 1:]
if ppl_token:
logits_s = []
for i in range(input_ids.shape[-1]):
logits_t = self._next_logits(input_ids[:, i : i + 1], lora, last_id_only = False)
logits_s.append(logits_t)
logits = torch.cat(logits_s, dim = 1)
else:
logits = self._next_logits(input_ids, lora, last_id_only = False)
log_probs = F.log_softmax(logits, dim=-1)
token_log_probs = log_probs.gather(-1, target_ids.unsqueeze(-1)).squeeze(-1)
logprob_sum += token_log_probs.sum().item()
logprob_count += target_ids.numel()
if chunk_count % 10 == 0:
print(".", end = "")
sys.stdout.flush()
chunk_count += 1
if chunk_limit and chunk_count >= chunk_limit:
break
mean_log_prob = logprob_sum / logprob_count
perplexity = math.exp(-mean_log_prob)
print("")
print(f" ** Perplexity{tag}: {perplexity:.4f}")
def add_args(parser):
parser.add_argument("-ppl", "--perplexity", nargs = '?', const = 'default', metavar = "METHOD", help = "Perplexity benchmark. Optionally specify method: gptq-for-llama, llama.cpp (not yet implemented)")
parser.add_argument("-ppl_ds", "--perplexity_dataset", metavar = "DATAPATH", type = str, help = "Load dataset for perplexity (JSONL if .jsonl, otherwise parses it as raw text)")
parser.add_argument("-ppl_cn", "--perplexity_chunk_num", nargs = "?", type = int, help = "Number of chunks for perplexity benchmark", default = 100)
parser.add_argument("-ppl_cs", "--perplexity_chunk_size", type = int, help = "Size of chunks for perplexity benchmark", default = 2048)
parser.add_argument("-ppl_ct", "--perplexity_chunk_truncate", type = int, help = "Truncated size of chunks for perplexity benchmark", default = 2048)
parser.add_argument("-ppl_co", "--perplexity_chunk_overlap", type = int, help = "Chunk overlap", default = 0)
parser.add_argument("-ppl_cm", "--perplexity_chunk_min", type = int, help = "Minimum chunk length", default = 50)
parser.add_argument("-ppl_key", "--perplexity_json_key", type = str, help = "Key to extract from JSON dataset, default: 'text'", default = "text")
parser.add_argument("-ppl_t", "--perplexity_token", action = "store_true", help = "Run perplexity test on individual tokens, for debug purposes (slow)")
def post_parse(args):
if not args.perplexity: return
# GPTQ-for-LLaMa equivalent
if args.perplexity == "gptq-for-llama":
args.perplexity_dataset = "datasets/wikitext2.txt"
args.perplexity_chunk_num = 128
args.perplexity_chunk_size = 2048
args.perplexity_chunk_truncate = 2048
args.perplexity_chunk_overlap = 0
args.perplexity_chunk_min = 0
# Default dataset for legacy method
if args.perplexity_dataset is None: args.perplexity_dataset = "datasets/wikitext2_val_sample.jsonl"
print(f" -- Perplexity:")
print(f" -- - Dataset: {args.perplexity_dataset}")
print(f" -- - Chunks: {args.perplexity_chunk_num}")
print(f" -- - Chunk size: {args.perplexity_chunk_size}" + (f" -> {args.perplexity_chunk_truncate}" if args.perplexity_chunk_truncate is not None else ""))
print(f" -- - Chunk overlap: {args.perplexity_chunk_overlap}")
print(f" -- - Min. chunk size: {args.perplexity_chunk_min}")
print(f" -- - Key: {args.perplexity_json_key}")
if args.perplexity_token: print("f -- - Per-token mode")