forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lmdb_dataset.py
301 lines (272 loc) · 10.3 KB
/
lmdb_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
from paddle.io import Dataset
import lmdb
import cv2
import string
import six
import pickle
from PIL import Image
from .imaug import transform, create_operators
class LMDBDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
super(LMDBDataSet, self).__init__()
global_config = config["Global"]
dataset_config = config[mode]["dataset"]
loader_config = config[mode]["loader"]
batch_size = loader_config["batch_size_per_card"]
data_dir = dataset_config["data_dir"]
self.do_shuffle = loader_config["shuffle"]
self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
logger.info("Initialize indexs of datasets:%s" % data_dir)
self.data_idx_order_list = self.dataset_traversal()
if self.do_shuffle:
np.random.shuffle(self.data_idx_order_list)
self.ops = create_operators(dataset_config["transforms"], global_config)
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", 1)
ratio_list = dataset_config.get("ratio_list", [1.0])
self.need_reset = True in [x < 1 for x in ratio_list]
def load_hierarchical_lmdb_dataset(self, data_dir):
lmdb_sets = {}
dataset_idx = 0
for dirpath, dirnames, filenames in os.walk(data_dir + "/"):
if not dirnames:
env = lmdb.open(
dirpath,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
txn = env.begin(write=False)
num_samples = int(txn.get("num-samples".encode()))
lmdb_sets[dataset_idx] = {
"dirpath": dirpath,
"env": env,
"txn": txn,
"num_samples": num_samples,
}
dataset_idx += 1
return lmdb_sets
def dataset_traversal(self):
lmdb_num = len(self.lmdb_sets)
total_sample_num = 0
for lno in range(lmdb_num):
total_sample_num += self.lmdb_sets[lno]["num_samples"]
data_idx_order_list = np.zeros((total_sample_num, 2))
beg_idx = 0
for lno in range(lmdb_num):
tmp_sample_num = self.lmdb_sets[lno]["num_samples"]
end_idx = beg_idx + tmp_sample_num
data_idx_order_list[beg_idx:end_idx, 0] = lno
data_idx_order_list[beg_idx:end_idx, 1] = list(range(tmp_sample_num))
data_idx_order_list[beg_idx:end_idx, 1] += 1
beg_idx = beg_idx + tmp_sample_num
return data_idx_order_list
def get_img_data(self, value):
"""get_img_data"""
if not value:
return None
imgdata = np.frombuffer(value, dtype="uint8")
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
def get_ext_data(self):
ext_data_num = 0
for op in self.ops:
if hasattr(op, "ext_data_num"):
ext_data_num = getattr(op, "ext_data_num")
break
load_data_ops = self.ops[: self.ext_op_transform_idx]
ext_data = []
while len(ext_data) < ext_data_num:
lmdb_idx, file_idx = self.data_idx_order_list[np.random.randint(len(self))]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]["txn"], file_idx
)
if sample_info is None:
continue
img, label = sample_info
data = {"image": img, "label": label}
data = transform(data, load_data_ops)
if data is None:
continue
ext_data.append(data)
return ext_data
def get_lmdb_sample_info(self, txn, index):
label_key = "label-%09d".encode() % index
label = txn.get(label_key)
if label is None:
return None
label = label.decode("utf-8")
img_key = "image-%09d".encode() % index
imgbuf = txn.get(img_key)
return imgbuf, label
def __getitem__(self, idx):
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]["txn"], file_idx
)
if sample_info is None:
return self.__getitem__(np.random.randint(self.__len__()))
img, label = sample_info
data = {"image": img, "label": label}
data["ext_data"] = self.get_ext_data()
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return self.data_idx_order_list.shape[0]
class LMDBDataSetSR(LMDBDataSet):
def buf2PIL(self, txn, key, type="RGB"):
imgbuf = txn.get(key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
im = Image.open(buf).convert(type)
return im
def str_filt(self, str_, voc_type):
alpha_dict = {
"digit": string.digits,
"lower": string.digits + string.ascii_lowercase,
"upper": string.digits + string.ascii_letters,
"all": string.digits + string.ascii_letters + string.punctuation,
}
if voc_type == "lower":
str_ = str_.lower()
for char in str_:
if char not in alpha_dict[voc_type]:
str_ = str_.replace(char, "")
return str_
def get_lmdb_sample_info(self, txn, index):
self.voc_type = "upper"
self.max_len = 100
self.test = False
label_key = b"label-%09d" % index
word = str(txn.get(label_key).decode())
img_HR_key = b"image_hr-%09d" % index # 128*32
img_lr_key = b"image_lr-%09d" % index # 64*16
try:
img_HR = self.buf2PIL(txn, img_HR_key, "RGB")
img_lr = self.buf2PIL(txn, img_lr_key, "RGB")
except IOError or len(word) > self.max_len:
return self[index + 1]
label_str = self.str_filt(word, self.voc_type)
return img_HR, img_lr, label_str
def __getitem__(self, idx):
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]["txn"], file_idx
)
if sample_info is None:
return self.__getitem__(np.random.randint(self.__len__()))
img_HR, img_lr, label_str = sample_info
data = {"image_hr": img_HR, "image_lr": img_lr, "label": label_str}
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
class LMDBDataSetTableMaster(LMDBDataSet):
def load_hierarchical_lmdb_dataset(self, data_dir):
lmdb_sets = {}
dataset_idx = 0
env = lmdb.open(
data_dir,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
txn = env.begin(write=False)
num_samples = int(pickle.loads(txn.get(b"__len__")))
lmdb_sets[dataset_idx] = {
"dirpath": data_dir,
"env": env,
"txn": txn,
"num_samples": num_samples,
}
return lmdb_sets
def get_img_data(self, value):
"""get_img_data"""
if not value:
return None
imgdata = np.frombuffer(value, dtype="uint8")
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
def get_lmdb_sample_info(self, txn, index):
def convert_bbox(bbox_str_list):
bbox_list = []
for bbox_str in bbox_str_list:
bbox_list.append(int(bbox_str))
return bbox_list
try:
data = pickle.loads(txn.get(str(index).encode("utf8")))
except:
return None
# img_name, img, info_lines
file_name = data[0]
bytes = data[1]
info_lines = data[2] # raw data from TableMASTER annotation file.
# parse info_lines
raw_data = info_lines.strip().split("\n")
raw_name, text = (
raw_data[0],
raw_data[1],
) # don't filter the samples's length over max_seq_len.
text = text.split(",")
bbox_str_list = raw_data[2:]
bbox_split = ","
bboxes = [
{"bbox": convert_bbox(bsl.strip().split(bbox_split)), "tokens": ["1", "2"]}
for bsl in bbox_str_list
]
# advance parse bbox
# import pdb;pdb.set_trace()
line_info = {}
line_info["file_name"] = file_name
line_info["structure"] = text
line_info["cells"] = bboxes
line_info["image"] = bytes
return line_info
def __getitem__(self, idx):
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
data = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]["txn"], file_idx)
if data is None:
return self.__getitem__(np.random.randint(self.__len__()))
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return self.data_idx_order_list.shape[0]