-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg_features.py
116 lines (89 loc) · 3.55 KB
/
vgg_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
model_urls = {'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'}
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
model_dir = 'pretrained_models'
class VGG_features(nn.Module):
def __init__(self, cfg, batch_norm=False, init_weights=True):
super(VGG_features, self).__init__()
self.batch_norm = batch_norm
self.kernel_sizes = []
self.strides = []
self.paddings = []
self.features = self._make_layers(cfg, batch_norm)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def _make_layers(self, cfg, batch_norm):
self.n_layers = 0
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
self.kernel_sizes.append(2)
self.strides.append(2)
self.paddings.append(0)
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
self.n_layers += 1
self.kernel_sizes.append(3)
self.strides.append(1)
self.paddings.append(1)
in_channels = v
return nn.Sequential(*layers)
def conv_info(self):
return self.kernel_sizes, self.strides, self.paddings
def num_layers(self):
'''
the number of conv layers in the network
'''
return self.n_layers
def __repr__(self):
template = 'VGG{}, batch_norm={}'
return template.format(self.num_layers() + 3,
self.batch_norm)
def vgg19_features(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration "E")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG_features(cfg['E'], batch_norm=False, **kwargs)
if pretrained:
my_dict = model_zoo.load_url(model_urls['vgg19'], model_dir=model_dir)
keys_to_remove = set()
for key in my_dict:
if key.startswith('classifier'):
keys_to_remove.add(key)
for key in keys_to_remove:
del my_dict[key]
model.load_state_dict(my_dict, strict=False)
return model
if __name__ == '__main__':
vgg19_f = vgg19_features(pretrained=True)
print(vgg19_f)