-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreceptive_field.py
123 lines (102 loc) · 5.57 KB
/
receptive_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import math
def compute_layer_rf_info(layer_filter_size, layer_stride, layer_padding,
previous_layer_rf_info):
n_in = previous_layer_rf_info[0] # input size
j_in = previous_layer_rf_info[1] # receptive field jump of input layer
r_in = previous_layer_rf_info[2] # receptive field size of input layer
start_in = previous_layer_rf_info[3] # center of receptive field of input layer
if layer_padding == 'SAME':
n_out = math.ceil(float(n_in) / float(layer_stride))
if (n_in % layer_stride == 0):
pad = max(layer_filter_size - layer_stride, 0)
else:
pad = max(layer_filter_size - (n_in % layer_stride), 0)
assert(n_out == math.floor((n_in - layer_filter_size + pad)/layer_stride) + 1) # sanity check
assert(pad == (n_out-1)*layer_stride - n_in + layer_filter_size) # sanity check
elif layer_padding == 'VALID':
n_out = math.ceil(float(n_in - layer_filter_size + 1) / float(layer_stride))
pad = 0
assert(n_out == math.floor((n_in - layer_filter_size + pad)/layer_stride) + 1) # sanity check
assert(pad == (n_out-1)*layer_stride - n_in + layer_filter_size) # sanity check
else:
# layer_padding is an int that is the amount of padding on one side
pad = layer_padding * 2
n_out = math.floor((n_in - layer_filter_size + pad)/layer_stride) + 1
pL = math.floor(pad/2)
j_out = j_in * layer_stride
r_out = r_in + (layer_filter_size - 1)*j_in
start_out = start_in + ((layer_filter_size - 1)/2 - pL)*j_in
return [n_out, j_out, r_out, start_out]
def compute_rf_protoL_at_spatial_location(img_size, height_index, width_index, protoL_rf_info):
n = protoL_rf_info[0]
j = protoL_rf_info[1]
r = protoL_rf_info[2]
start = protoL_rf_info[3]
assert(height_index < n)
assert(width_index < n)
center_h = start + (height_index*j)
center_w = start + (width_index*j)
rf_start_height_index = max(int(center_h - (r/2)), 0)
rf_end_height_index = min(int(center_h + (r/2)), img_size)
rf_start_width_index = max(int(center_w - (r/2)), 0)
rf_end_width_index = min(int(center_w + (r/2)), img_size)
return [rf_start_height_index, rf_end_height_index,
rf_start_width_index, rf_end_width_index]
def compute_rf_prototype(img_size, prototype_patch_index, protoL_rf_info):
img_index = prototype_patch_index[0]
height_index = prototype_patch_index[1]
width_index = prototype_patch_index[2]
rf_indices = compute_rf_protoL_at_spatial_location(img_size,
height_index,
width_index,
protoL_rf_info)
return [img_index, rf_indices[0], rf_indices[1],
rf_indices[2], rf_indices[3]]
def compute_rf_prototypes(img_size, prototype_patch_indices, protoL_rf_info):
rf_prototypes = []
for prototype_patch_index in prototype_patch_indices:
img_index = prototype_patch_index[0]
height_index = prototype_patch_index[1]
width_index = prototype_patch_index[2]
rf_indices = compute_rf_protoL_at_spatial_location(img_size,
height_index,
width_index,
protoL_rf_info)
rf_prototypes.append([img_index, rf_indices[0], rf_indices[1],
rf_indices[2], rf_indices[3]])
return rf_prototypes
def compute_proto_layer_rf_info(img_size, cfg, prototype_kernel_size):
rf_info = [img_size, 1, 1, 0.5]
for v in cfg:
if v == 'M':
rf_info = compute_layer_rf_info(layer_filter_size=2,
layer_stride=2,
layer_padding='SAME',
previous_layer_rf_info=rf_info)
else:
rf_info = compute_layer_rf_info(layer_filter_size=3,
layer_stride=1,
layer_padding='SAME',
previous_layer_rf_info=rf_info)
proto_layer_rf_info = compute_layer_rf_info(layer_filter_size=prototype_kernel_size,
layer_stride=1,
layer_padding='VALID',
previous_layer_rf_info=rf_info)
return proto_layer_rf_info
def compute_proto_layer_rf_info_v2(img_size, layer_filter_sizes, layer_strides, layer_paddings, prototype_kernel_size):
assert(len(layer_filter_sizes) == len(layer_strides))
assert(len(layer_filter_sizes) == len(layer_paddings))
rf_info = [img_size, 1, 1, 0.5]
for i in range(len(layer_filter_sizes)):
filter_size = layer_filter_sizes[i]
stride_size = layer_strides[i]
padding_size = layer_paddings[i]
rf_info = compute_layer_rf_info(layer_filter_size=filter_size,
layer_stride=stride_size,
layer_padding=padding_size,
previous_layer_rf_info=rf_info)
proto_layer_rf_info = compute_layer_rf_info(layer_filter_size=prototype_kernel_size,
layer_stride=1,
layer_padding='VALID',
previous_layer_rf_info=rf_info)
return proto_layer_rf_info