-
Notifications
You must be signed in to change notification settings - Fork 6
/
crop_model_en.py
598 lines (433 loc) · 24.3 KB
/
crop_model_en.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
#!/usr/bin/env python3
import os, sys
import argparse
import numpy as np
import json
import multiprocessing
import time
import traceback
import matplotlib.pyplot as plt
import pandas as pd
import yaml
from dateutil.relativedelta import relativedelta
import pcse
from pcse.models import Wofost71_WLP_FD
from pcse.fileinput import CABOFileReader, YAMLCropDataProvider
from pcse.db import NASAPowerWeatherDataProvider
from pcse.util import WOFOST71SiteDataProvider
from pcse.base import ParameterProvider
from pcse.engine import Engine
import datetime as dt
class Irrigation():
"""
Update: Class for all crop simulations with WOFOST model
Class for irrigation optimization
input: np.array of days and ammount of water
Example: [12,45,43] - days
[13,23,23] - water in sm
np.np.concatenate(days, water)
output: float (yield)
"""
def __init__(self):
self.date_crop_start = None
self.date_crop_end = None
self.range_irrigation_season = []
self.optimal_dates_irrigation = None
self.optimal_ammounts = None
#path to soil dats
self.data_dir = os.path.join(os.getcwd(), "data")
self.weather = None
self.user_parameters = None
self.total_ammount_of_losed_water = None
self.effective_irrigation = None
self.path_to_CSV_database = '../NASA_TEST/'
self._csv_weather_database_boarders = {'latitude_min':10,
'latitude_max':90,
'longitude_min':10,
'longitude_max':160}
def irrigation(self, x):
"""
np.array with dates and amounts of water
Ex.: [31, 42, 54, 10, 15, 16]
"""
assert len(x)%2==0, 'not symmetric'
half=len(x)//2
dates = x[:half]
amounts = x[half:]
local_range = pd.date_range(start=self.date_crop_start,end=self.date_crop_end)
dates_of_irrigation =[str(local_range[date])[:10] for date in dates]
ammounts_of_irrigation=amounts
return dates_of_irrigation, ammounts_of_irrigation
def load_model(self):
"""
Function to load input soil, site and crop parameters data from yaml files
"""
crop = YAMLCropDataProvider()
# soil = CABOFileReader(os.path.join(self.data_dir, "ec3.soil"))
soil = CABOFileReader(os.path.join(self.data_dir, "wofost_npk.soil"))
site = CABOFileReader(os.path.join(self.data_dir, "wofost_npk.site"))
site['CO2']=360.0
# site = WOFOST71SiteDataProvider(WAV=100,CO2=360)
#parameters for model
self.parameterprovider = ParameterProvider(soildata=soil, cropdata=crop, sitedata=site)
def run_simulation(self, crop_calendar):
# import yaml
# agromanagement = yaml.load(crop_calendar)
agromanagement = yaml.safe_load(crop_calendar)
wofost = Wofost71_WLP_FD(self.parameterprovider, self.weather, agromanagement)
wofost.run_till_terminate()
self.output = wofost.get_output()
return self.output[-1]['TWSO']
def run_simulation_manager(self, agromanagement):
# from pcse.engine import Engine
wofost = Wofost71_WLP_FD(self.parameterprovider, self.weather, agromanagement)
# wofost = Engine(self.parameterprovider, self.weather, agromanagement, config=os.path.join(self.data_dir, "Wofost71_NPK_grol.conf"))
wofost.run_till_terminate()
water_losed_into_deep_horizont = wofost.get_terminal_output()
sum_water = water_losed_into_deep_horizont['PERCT'] + water_losed_into_deep_horizont['LOSST']
# for paper - estimate effictive irrigation
self.effective_irrigation = water_losed_into_deep_horizont['RAINT']
self.total_ammount_of_losed_water = sum_water
self.output = wofost.get_output()
return self.output[-1]['TWSO']
def weather_loader(self,path_CSV_dir, latitude, longitude):
"""
Main fun to load weather
If we have CSV file - load CSV,
else: Load from NASA
"""
self.path_to_CSV_database = path_CSV_dir
# latitude_min = self._csv_weather_database_boarders['latitude_min']
# latitude_max = self._csv_weather_database_boarders['latitude_max']
# longitude_min = self._csv_weather_database_boarders['longitude_min']
# longitude_max = self._csv_weather_database_boarders['longitude_max']
# if latitude_min <= latitude < latitude_max and longitude_min <= longitude < longitude_max:
# If in range of our database - load CSV file from database
path = self.path_to_CSV_database + f'/NASA_weather_latitude_{latitude}_longitude_{longitude}.csv'
# print('path and file', path)
if os.path.exists(path):
print('LOAD FROM LOCAL CSV WEATHER DATABASE')
# path = self.path_to_CSV_database + f'NASA_weather_latitude_{latitude}_longitude_{longitude}_TEST.csv'
weather = pcse.fileinput.CSVWeatherDataProvider(path)
self.weather = weather
self.NASA_start_year = weather.first_date.year+1
### WEATHER YEAR TEST
self.NASA_last_year = weather.last_date.year-1
#self.NASA_last_year = weather.last_date.year
else:
print('No such directory or CSV file')
print('DOWNLOAD FROM NASA POWER database (1-5 mins)')
# Test load from NASA POWER and save as csv and after load
path = self.path_to_CSV_database
try:
start_time = time.time()
#API request to NASA database
weather = NASAPowerWeatherDataProvider(latitude, longitude, force_update=True)
# Print done if downloaded
print('____DONE_____','latitude',latitude, 'longitude',longitude,'____')
# export pcse.weather format to pandas df
df_weather = pd.DataFrame(weather.export())
#print('initial number of days:', len(df_weather))
#create full range of dates
r = pd.date_range(start=df_weather.DAY.min(), end=df_weather.DAY.max())
#extend range of dates
full_range_weather = df_weather.set_index('DAY').reindex(r).rename_axis('DAY').reset_index()
missing_days = (full_range_weather.isna()).sum().sum()
print('num_of_missing_days', missing_days)
#fill weather with fill forward method in pandas
filled_weather = full_range_weather.fillna(method='ffill', axis=0)
#save as csv file
filled_weather=filled_weather[['DAY', 'IRRAD', 'TMIN', 'TMAX', 'VAP', 'WIND', 'RAIN']]
filled_weather['SNOWDEPTH'] = 'NaN'
filled_weather[['IRRAD']] = filled_weather[['IRRAD']]/1000.
filled_weather[['VAP']] = filled_weather[['VAP']]/10.
filled_weather.DAY=filled_weather.DAY.dt.strftime('%Y%m%d')
text = open(path+"pattern.csv", "r")
text = ''.join([i for i in text]).replace("1111", str(weather.longitude))
text = ''.join([i for i in text]).replace("2222", str(weather.latitude))
text = ''.join([i for i in text]).replace("3333", str(weather.elevation))
text = ''.join([i for i in text]).replace("4444", str(weather.angstA))
text = ''.join([i for i in text]).replace("5555", str(weather.angstB))
x = open(path+f'NASA_weather_latitude_{latitude}_longitude_{longitude}.csv',"w")
x.writelines(text)
x.close()
path_to_save_csv_file = path+f'NASA_weather_latitude_{latitude}_longitude_{longitude}.csv'
filled_weather.to_csv(path_to_save_csv_file, mode='a', header=False, index=False)
#add info to weather database and save it to csv
print('time in sec', time.time() - start_time)
#LOAD WEATHER as csv file
weather = pcse.fileinput.CSVWeatherDataProvider(path_to_save_csv_file)
self.weather = weather
self.NASA_start_year = weather.first_date.year+1
self.NASA_last_year = weather.last_date.year-1
except Exception:
info = traceback.format_exc()
print(info)
# self.NASA_weather_data_loader(latitude, longitude)
def update_csv_NASA_weather_database(self, path_CSV_dir, latitude_min, latitude_max, longitude_min, longitude_max):
"""
function for downloading NASA weather and creating csv files in folders for future simulation
Input: path, latitude_min, latitude_max, longitude_min, longitude_max
Output: CSV files in dir
"""
#import time
longitude_array = np.arange(longitude_min,longitude_max,step=1)
latitude_array = np.arange(latitude_min,latitude_max,step=1)
col_names=['latitude', 'longitude', 'Num_of_missing_dates', 'start_date', 'last_date']
weather_database = pd.DataFrame(data = np.zeros([latitude_array.shape[0]*longitude_array.shape[0], len(col_names)]), columns=col_names)
weather_database.start_date = pd.to_datetime(weather_database.start_date)
weather_database.last_date = pd.to_datetime(weather_database.last_date)
#path = '/gdrive/My Drive/NASA_CSV'
path = path_CSV_dir
i = 0
for latitude in latitude_array:
for longitude in longitude_array:
start_time = time.time()
#API request to NASA database
weather = NASAPowerWeatherDataProvider(latitude, longitude, force_update=True)
# Print done if downloaded
print('____DONE_____','latitude',latitude, 'longitude',longitude,'____')
# export pcse.weather format to pandas df
df_weather = pd.DataFrame(weather.export())
#print('initial number of days:', len(df_weather))
#create full range of dates
r = pd.date_range(start=df_weather.DAY.min(), end=df_weather.DAY.max())
#extend range of dates
full_range_weather = df_weather.set_index('DAY').reindex(r).rename_axis('DAY').reset_index()
missing_days = (full_range_weather.isna()).sum().sum()
print('num_of_missing_days', missing_days)
#fill weather with fill forward method in pandas
filled_weather = full_range_weather.fillna(method='ffill', axis=0)
##save as csv file
#filled_weather.to_csv(path+f'/NASA_weather_latitude_{latitude}_longitude{longitude}.csv', index=False)
# filled_weather = pd.read_csv('../NASA_test/NASA_weather_latitude_30_longitude40.csv')
# filled_weather.DAY = pd.to_datetime(loaded_weather.DAY)
filled_weather=filled_weather[['DAY', 'IRRAD', 'TMIN', 'TMAX', 'VAP', 'WIND', 'RAIN']]
filled_weather['SNOWDEPTH'] = 'NaN'
filled_weather[['IRRAD']] = filled_weather[['IRRAD']]/1000.
filled_weather[['VAP']] = filled_weather[['VAP']]/10.
filled_weather.DAY=filled_weather.DAY.dt.strftime('%Y%m%d')
text = open(path+"pattern.csv", "r")
text = ''.join([i for i in text]).replace("1111", str(weather.longitude))
text = ''.join([i for i in text]).replace("2222", str(weather.latitude))
text = ''.join([i for i in text]).replace("3333", str(weather.elevation))
text = ''.join([i for i in text]).replace("4444", str(weather.angstA))
text = ''.join([i for i in text]).replace("5555", str(weather.angstB))
x = open(path+f'NASA_weather_latitude_{latitude}_longitude_{longitude}_TEST.csv',"w")
x.writelines(text)
x.close()
filled_weather.to_csv(path+f'NASA_weather_latitude_{latitude}_longitude_{longitude}_TEST.csv', mode='a', header=False, index=False)
#add info to weather database and save it to csv
list_to_add = [latitude, longitude, missing_days, weather.first_date, weather.last_date ]
weather_database.iloc[i,:] = list_to_add
i += 1
weather_database.to_csv(path+'weather_database.csv', mode='a')
print('time in sec', time.time() - start_time)
def NASA_weather_data_loader(self, latitude,longitude):
"""
Download weather from NASA database and fill missing values
Input: latitude,longitude (int)
Output: Weather database for 30-40 last years
"""
weather = NASAPowerWeatherDataProvider(latitude, longitude, force_update=True)
df_weather = pd.DataFrame(weather.export())
r = pd.date_range(start=df_weather.DAY.min(), end=df_weather.DAY.max())
full_range_weather = df_weather.set_index('DAY').reindex(r).rename_axis('DAY').reset_index()
filled_weather = full_range_weather.fillna(method='ffill', axis=0)
weather._make_WeatherDataContainers(filled_weather.to_dict(orient="records"))
self.NASA_start_year = weather.first_date.year+1
self.NASA_last_year = weather.last_date.year-1
self.weather = weather
def agromanager_writer(self, crop_name, dates_irrigation, dates_npk, amounts, npk_list):
"""
Fun to add new irrigation events in agrocalendar
Input: dates - list of date in str format (ex. 2006-07-10)
amounts - list of water mm in str format (ex. '10')
Example: #add example
"""
import datetime as dt
self.date_start = (dt.datetime.strptime(self.date_crop_start, '%Y-%m-%d') - dt.timedelta(days=2)).strftime(format='%Y-%m-%d')
dict_of_crop_sorts = {'barley':'Spring_barley_301',
'cassava':'Cassava_VanHeemst_1988',
'chickpea':'Chickpea_VanHeemst_1988',
'cotton':'Cotton_VanHeemst_1988',
'cowpea':'Cowpea_VanHeemst_1988',
'fababean':'Faba_bean_801',
'groundnut':'Groundnut_VanHeemst_1988',
'maize':'Maize_VanHeemst_1988',
'millet':'Millet_VanHeemst_1988',
'mungbean':'Mungbean_VanHeemst_1988',
'pigeonpea':'Pigeonpea_VanHeemst_1988',
'potato':'Potato_701',
'rapeseed':'Oilseed_rape_1001',
'rice':'Rice_501',
'sorghum':'Sorghum_VanHeemst_1988',
'soybean':'Soybean_901',
'sugarbeet':'Sugarbeet_601',
'sugarcane':'Sugarcane_VanHeemst_1988',
'sunflower':'Sunflower_1101',
'sweetpotato':'Sweetpotato_VanHeemst_1988',
'tobacco':'Tobacco_VanHeemst_1988',
'wheat':'Winter_wheat_101'}
english_crop_name = crop_name
english_sort_name = dict_of_crop_sorts[english_crop_name]
#Generate crop parameters dict for future process
crop_data = {
'start_moment':self.date_start,
'crop_name': english_crop_name,
'crop_full_name':english_sort_name,
'crop_start_date': self.date_crop_start,
'crop_end_date': self.date_crop_end,
'events_irrigation': [],
'events_npk':[]
}
#check two or more irrigation events for one day - it's problem for model
if len(set(dates_irrigation)) != len(dates_irrigation):
dates_irrigation=list(set(dates_irrigation))
amounts = amounts[:len(set(dates_irrigation))]
if len(set(dates_npk)) != len(dates_npk):
dates_npk=list(set(dates_npk))
amounts = amounts[:len(set(dates_npk))]
crop_data['events_irrigation'] = [{date: amount for (date, amount) in zip(dates_irrigation, amounts)}]
crop_data['events_npk']=[{date: npk for (date, npk) in zip(dates_npk, npk_list)}]
template = """
- 2000-01-01:
CropCalendar:
crop_name: sugarbeet
variety_name: Sugarbeet_601
crop_start_date: 2000-02-02
crop_start_type: emergence
crop_end_date: 2000-03-03
crop_end_type: harvest
max_duration: 300
TimedEvents:
- event_signal: irrigate
name: Irrigation application table
comment: All irrigation amounts in cm
events_table:
- 2018-07-07: {amount: 10, efficiency: 0.7}
- event_signal: apply_npk
name: Timed N/P/K application table
comment: All fertilizer amounts in kg/ha
events_table:
- 2000-01-10: {N_amount : 10, P_amount: 5, K_amount: 2}
StateEvents: null"""
crop_start = yaml.safe_load(crop_data['crop_start_date'])
crop_end = yaml.safe_load(crop_data['crop_end_date'])
agromanag = yaml.safe_load(template)
agromanag[0][crop_start - dt.timedelta(days=2)] = agromanag[0].pop(dt.date(2000, 1, 1))
x = (list(agromanag[0].items())[0][0])
agromanag[0][x]['CropCalendar']['crop_name'] = english_crop_name
agromanag[0][x]['CropCalendar']['variety_name'] = english_sort_name
agromanag[0][x]['CropCalendar']['crop_start_date'] = crop_start
agromanag[0][x]['CropCalendar']['crop_end_date'] = crop_end
agromanag[0][x]['TimedEvents'][0]['events_table'].clear()
agromanag[0][x]['TimedEvents'][1]['events_table'].clear()
if bool(crop_data['events_irrigation'][0]):
for date,amount in zip(dates_irrigation, amounts):
agromanag[0][x]['TimedEvents'][0]['events_table'].append({yaml.safe_load(date):{'amount': float(amount), 'efficiency': 0.7}})
if bool(crop_data['events_npk'][0]):
for date, npk in zip(dates_npk, npk_list):
agromanag[0][x]['TimedEvents'][1]['events_table'].append({yaml.safe_load(date):{'N_amount' : npk[0], 'P_amount': npk[1], 'K_amount': npk[2], 'N_recovery':0.7, 'P_recovery':0.7, 'K_recovery':0.7}})
else:
#agromanagement[0][x]['TimedEvents'][:1]
agromanag[0][x]['TimedEvents'].pop()
else:
agromanag[0][x]['TimedEvents'] = None
return agromanag
def crop_hpc(self, year):
self.date_crop_start = self.year_changer(self.user_parameters['crop_start'],year)
self.date_crop_end = self.year_changer(self.user_parameters['crop_end'],year)
dates_irrigation, amounts = self.user_parameters['irrigation_events'], self.user_parameters['irrigation_ammounts']
dates_irrigation = [self.year_changer(obj, year) for obj in dates_irrigation]
dates_npk, npk_list = self.user_parameters['npk_events'], self.user_parameters['npk']
dates_npk = [self.year_changer(obj, year) for obj in dates_npk]
agromanagement = self.agromanager_writer(self.user_parameters['crop_name'], dates_irrigation, dates_npk, amounts, npk_list)
self.load_model()
self.run_simulation_manager(agromanagement)
output = pd.DataFrame(self.output).set_index("day")
return output
def irrigation_dates(self, x):
"""
np.array with dates
Ex.: [31, 42, 54, 10, 15, 16]
"""
dates = x
local_range = pd.date_range(start=self.user_parameters['crop_start'],end=self.user_parameters['crop_end'])
dates_of_irrigation =[str(local_range[date])[:10] for date in dates]
return dates_of_irrigation
def year_changer(self, obj, year):
"""
Util function to change user year to new year
Input: str - date event in format '%Y-%m-%d'
Output: str - new date event in format '%Y-%m-%d'
"""
type_of_dt = '%Y-%m-%d'
year_delta = int(self.user_parameters['crop_end'][:4]) - year
dt_date_crop_start=dt.datetime.strptime(obj, type_of_dt) - relativedelta(years=year_delta)
updated_date = dt.datetime.strftime(dt_date_crop_start, type_of_dt)
return updated_date
class Optimization(Irrigation):
def __init__(self):
super().__init__()
self.year=None
self.optimal_dates_irrigation = None
self.num_process = 12
self.optimizer_counter = 0
self.container_of_mean_yields = []
self.container_of_mean_water_loss = []
self.container_of_irrigation_amount = []
self.irrigation_dates_for_many_years_optim = None
def multiobjective(self, x):
"""
Minimize multiobjective function to define
best dates and ammounts of water for 20 years
"""
x_dates = x[:len(self.user_parameters['irrigation_events'])]
x_ammounts = x[len(self.user_parameters['irrigation_events']):]
amounts = [float(i) for i in x_ammounts]
inputs_years = np.arange(self.NASA_start_year, self.NASA_start_year+20)
self.irrigation_dates_for_many_years_optim = self.irrigation_dates(x_dates)
crop_sim_for_20_years = []
water_loss_for_20_years = []
for year in inputs_years:
#change year from json-year to historical
self.date_crop_start = self.year_changer(self.user_parameters['crop_start'],year)
self.date_crop_end = self.year_changer(self.user_parameters['crop_end'],year)
#convet dates from int to dt.datetime
dates_irrigation = self.irrigation_dates(x_dates)
#Setup irrigation ammount
dates_irrigation = [self.year_changer(obj, year) for obj in dates_irrigation]
dates_npk, npk_list = self.user_parameters['npk_events'], self.user_parameters['npk']
dates_npk = [self.year_changer(obj, year) for obj in dates_npk]
agromanagement = self.agromanager_writer(self.user_parameters['crop_name'], dates_irrigation, dates_npk, amounts, npk_list)
self.load_model()
self.run_simulation_manager(agromanagement)
output = pd.DataFrame(self.output).set_index("day")
## append to list loss
crop_sim_for_20_years.append(output)
water_loss_for_20_years.append(self.total_ammount_of_losed_water)
#select only last day crop yield
yield_of_crop_sim_for_20_years = [(crop_sim_for_20_years[i]['TWSO'][-1]/1000) for i in range(len(crop_sim_for_20_years))]
# calculate mean
out_yield = np.mean(yield_of_crop_sim_for_20_years)
out_water_loss = np.mean(water_loss_for_20_years)
irrigation_sum = np.sum(amounts)
self.container_of_irrigation_amount.append(irrigation_sum)
self.container_of_mean_water_loss.append(out_water_loss)
self.container_of_mean_yields.append(out_yield)
#counter for optimizer
self.optimizer_counter += 1
return -out_yield, out_water_loss ## check this in out_yield -- MAX, out_water -- MIN !!!!
if __name__ == '__main__':
#main_crop_model_memory.py --path_to_data_dir ../pcse_notebooks/data/soil --path_to_user_file input_agro_calendar.json --path_to_CSV_weather /Users/mikhailgasanov/Documents/machine_learning/NASA_CSV --plot_name first_plot.png
#agrpareser to setup dir of data and user JSON file
parser = argparse.ArgumentParser(description='Parser_of_input_data')
parser.add_argument('--path_to_data_dir', type=str, default="./",help='Path to data with soil, crop and other parameter files', required=True)
parser.add_argument('--path_to_user_file', type=str, default="input_agro_calendar.json",help='JSON file with user input parameters', required=True)
parser.add_argument('--path_to_CSV_weather', type=str, default="./",help='Path to dir with CSV weather database', required=True)
parser.add_argument('--plot_name', type=str, default='plot.png', help='Resulted plot name')
parser.add_argument('--num_cpu', type=int, default=2, help='Available num of CPUs on your cluster')
args = parser.parse_args()
WOFOST = Irrigation()
print('Done!')