diff --git a/experiment.py.ipynb b/experiment.py.ipynb deleted file mode 100644 index c0c46d3..0000000 --- a/experiment.py.ipynb +++ /dev/null @@ -1,961 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 60, - "id": "initial_id", - "metadata": { - "collapsed": true, - "ExecuteTime": { - "end_time": "2024-02-19T17:53:47.687379Z", - "start_time": "2024-02-19T17:53:47.683722Z" - } - }, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor\n", - "from sklearn.linear_model import ElasticNet, SGDRegressor, Ridge\n", - "from astropy.io import fits\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "response_path = \"data/D16Feb2024_eccco_response_feldman_m_el_with_tables_s_i_lw_coopersun.fits\"\n", - "response = fits.getdata(response_path)\n", - "response_hdul = fits.open(response_path)\n", - "\n", - "weights_path = \"data/eccco_is_lw_forwardmodel_sample_weights_psf4pix_el.fits\"\n", - "weights = fits.getdata(weights_path)\n", - "\n", - "image_path = \"data/eccco_is_lw_forwardmodel_thermal_response_psf4pix_el.fits\"\n", - "image = fits.getdata(image_path)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:42:58.093979Z", - "start_time": "2024-02-19T17:42:58.072165Z" - } - }, - "id": "73cab691c21f5962", - "execution_count": 38 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "((21, 1395, 5491), (2048, 5491), (2048, 5491))" - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "response.shape, weights.shape, image.shape" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:42:58.385488Z", - "start_time": "2024-02-19T17:42:58.381758Z" - } - }, - "id": "2e536333a541357d", - "execution_count": 39 - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dep_list [5.5 5.6 5.7 5.8 5.9 6. 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7. 7.1 7.2\n", - " 7.3 7.4 7.5]\n" - ] - } - ], - "source": [ - "dep_name = response_hdul[0].header['DEPNAME']\n", - "dep_list = response_hdul[1].data[dep_name]\n", - "dep_list = np.round(dep_list, decimals=2)\n", - "dep_index_list = response_hdul[1].data['index']\n", - "print(\"dep_list\", dep_list)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:42:58.682806Z", - "start_time": "2024-02-19T17:42:58.680610Z" - } - }, - "id": "fa65e33ce38b8497", - "execution_count": 40 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "num_dep, num_field_angles, rsp_func_width = np.shape(response)\n", - "\n", - "num_deps = len(dep_list)\n", - "\n", - "begin_slit_index, end_slit_index = 0, 1394\n", - "solution_fov_width = 1\n", - "\n", - "num_field_angles = (end_slit_index - begin_slit_index) + 1\n", - "calc_num_slits = divmod(num_field_angles, solution_fov_width)\n", - "num_slits = int(calc_num_slits[0])\n", - "center_slit = divmod(end_slit_index - begin_slit_index, 2)[0] + begin_slit_index\n", - "half_slits = divmod(num_slits, 2)\n", - " \n", - "prepared_response = np.zeros((num_deps * num_slits, rsp_func_width), dtype=np.float32)\n", - "response_count = 0\n", - "for index in dep_index_list:\n", - " # Smooth over dependence.\n", - " slit_count = 0\n", - " for slit_num in range(center_slit - (half_slits[0] * solution_fov_width), center_slit + ((half_slits[0] *solution_fov_width) + 1), solution_fov_width):\n", - " #for slit_num in range(begin_slit_index, (end_slit_index + 1), self.solution_fov_width):\n", - " if solution_fov_width == 1:\n", - " prepared_response[(num_deps * slit_count) + response_count, :] = response[index, slit_num, :]\n", - " else:\n", - " raise NotImplementedError(\"dummy marcus\")\n", - " slit_count += 1\n", - " response_count += 1" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:42:59.253863Z", - "start_time": "2024-02-19T17:42:59.073786Z" - } - }, - "id": "66fad4609ebd9bc", - "execution_count": 41 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "prepared_response = prepared_response.transpose()" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:42:59.853667Z", - "start_time": "2024-02-19T17:42:59.852093Z" - } - }, - "id": "aab31285aa80609e", - "execution_count": 42 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "f = ExtraTreesRegressor()" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:43:00.177966Z", - "start_time": "2024-02-19T17:43:00.175908Z" - } - }, - "id": "9305c1c686541db6", - "execution_count": 43 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "X = prepared_response\n", - "y = image" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:43:00.984321Z", - "start_time": "2024-02-19T17:43:00.982744Z" - } - }, - "id": "d3177b4ed5083194", - "execution_count": 44 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "((5491, 29295), (2048, 5491))" - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X.shape, y.shape" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:43:02.517837Z", - "start_time": "2024-02-19T17:43:02.515790Z" - } - }, - "id": "8469af43a51e5c85", - "execution_count": 45 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "(1, 29295)" - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X[1].reshape(1, -1).shape" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:23:20.190744Z", - "start_time": "2024-02-19T17:23:20.187227Z" - } - }, - "id": "e9f4a6006375ac3e", - "execution_count": 20 - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "40.4 ms ± 127 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" - ] - } - ], - "source": [ - "%%timeit\n", - "\n", - "f.fit(X[1].reshape(1, -1), y.transpose()[1].reshape(1, -1))" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:24:03.561798Z", - "start_time": "2024-02-19T17:24:00.246338Z" - } - }, - "id": "d97ab481d7e18e2b", - "execution_count": 22 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "(1, 2048)" - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y.transpose()[1].reshape(1, -1).shape" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:43:32.825501Z", - "start_time": "2024-02-19T17:43:32.821807Z" - } - }, - "id": "fed296e97cb2dae9", - "execution_count": 53 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "alpha = 5\n", - "rho = 0.1\n", - "r = Ridge(alpha=alpha, fit_intercept=False, solver='auto')" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:58:42.770788Z", - "start_time": "2024-02-19T17:58:42.768854Z" - } - }, - "id": "2ae80d4bd2efe05", - "execution_count": 77 - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "85.8 ms ± 2.97 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" - ] - } - ], - "source": [ - "%%timeit\n", - "\n", - "r.fit(X[425].reshape(1, -1), y.transpose()[425].reshape(1, -1))" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:58:50.221534Z", - "start_time": "2024-02-19T17:58:43.077894Z" - } - }, - "id": "a252ba275572bb19", - "execution_count": 78 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "out = r.predict(X[425].reshape(1, -1))" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:58:56.781102Z", - "start_time": "2024-02-19T17:58:56.716645Z" - } - }, - "id": "2a1db1259abef988", - "execution_count": 79 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "[]" - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7T0lEQVR4nO3df1zV9cH//+cBBRHlICIcKFBqmVpkpYbM8rsmX5GszWTXdLHy6vJjuxq0q2ym9k2rrYVZVyvL5VW3tdo1a67vZW7ZsnlpyUoiwlHmjMzpsORAZJyTiIKc9+cPx3seOSAc3m8OBx732+3c8rxfr3PO64in8+T102EYhiEAAIAwEhHqBgAAAHQXAQYAAIQdAgwAAAg7BBgAABB2CDAAACDsEGAAAEDYIcAAAICwQ4ABAABhZ1CoG2AXn8+nw4cPa/jw4XI4HKFuDgAA6ALDMPTVV18pNTVVEREd97P02wBz+PBhpaWlhboZAAAgCIcOHdK5557bYXm/DTDDhw+XdOovIC4uLsStAQAAXeH1epWWlmZ+j3ek3waYtmGjuLg4AgwAAGHmbNM/uj2Jt6SkRNddd51SU1PlcDi0adOmdnX27t2rb33rW3I6nYqNjdWUKVNUXV1tlh8/flyFhYUaOXKkhg0bpvz8fNXW1vo9R3V1tWbPnq2hQ4cqKSlJS5Ys0cmTJ7vbXAAA0A91O8A0NjZq4sSJWrt2bcDy/fv368orr9S4ceP05ptv6oMPPtCKFSs0ZMgQs84dd9yhV155RS+99JJ27Nihw4cPa+7cuWZ5a2urZs+erebmZu3cuVPPP/+8nnvuOa1cuTKItwgAAPobh2EYRtAPdjj08ssva86cOea1+fPna/Dgwfrv//7vgI/xeDwaNWqUXnjhBX3nO9+RJH300UcaP368SktLNXXqVL322mu69tprdfjwYSUnJ0uS1q1bp6VLl+rzzz9XVFTUWdvm9XrldDrl8XgYQgIAIEx09fvb0n1gfD6fXn31VY0dO1a5ublKSkpSVlaW3zBTRUWFWlpalJOTY14bN26c0tPTVVpaKkkqLS1VZmamGV4kKTc3V16vV3v27An42idOnJDX6/W7AQCA/snSAFNXV6ejR49q1apVmjVrlv70pz/p+uuv19y5c7Vjxw5JktvtVlRUlOLj4/0em5ycLLfbbdY5Pby0lbeVBVJcXCyn02neWEINAED/ZXkPjCR9+9vf1h133KFLL71Uy5Yt07XXXqt169ZZ+VLtLF++XB6Px7wdOnTI1tcDAAChY2mASUxM1KBBgzRhwgS/6+PHjzdXIblcLjU3N6uhocGvTm1trVwul1nnzFVJbffb6pwpOjraXDLN0mkAAPo3SwNMVFSUpkyZoqqqKr/rH3/8sUaPHi1JmjRpkgYPHqxt27aZ5VVVVaqurlZ2drYkKTs7W7t371ZdXZ1ZZ+vWrYqLi2sXjgAAwMDT7Y3sjh49qk8++cS8f+DAAVVWViohIUHp6elasmSJ5s2bp+nTp+vqq6/Wli1b9Morr+jNN9+UJDmdTi1cuFCLFy9WQkKC4uLidNtttyk7O1tTp06VJM2cOVMTJkzQjTfeqNWrV8vtduuee+5RYWGhoqOjrXnnAAAgfBnd9MYbbxiS2t0WLFhg1vnlL39pfO1rXzOGDBliTJw40di0aZPfczQ1NRk//OEPjREjRhhDhw41rr/+eqOmpsavzsGDB428vDwjJibGSExMNO68806jpaWly+30eDyGJMPj8XT3LQIAgBDp6vd3j/aB6ctCtQ9MjadJB+oblZEYqxRnTK+9LgAA/UFXv7/77VlIobChvFrLN+6Wz5AiHFLx3EzNm5Ie6mYBANDvWDqJdyCr8TSZ4UWSfIZ098YPVeNpCm3DAADohwgwFjlQ32iGlzathqGD9cdC0yAAAPoxAoxFMhJjFXHGyd+RDofGJA4NTYMAAOjHCDAWKfn4c50+HdrhkB6cezETeQEAsAEBxgJt819OH0FyGNL0saNC1iYAAPozAowFAs1/8UmqOPhlSNoDAEB/R4CxQKD5L5L0o9/+RRvKq3u/QQAA9HMEGAukOGNUPDez3V8mS6kBALAHAcYi86aka80Nl7W7zlJqAACsR4Cx0KTRI1hKDQBALyDAWKhtKCnScSrFRDocLKUGAMAGnIVksXlT0jV97CgdrD+mMYlDCS8AANiAAGODFGcMwQUAABsxhGSRGk+Tdu6vZ8URAAC9gB4YC2worzZPoo5wSMVzMzVvSnqomwUAQL9FD0wPtR0j0LYTL3u/AABgPwJMDwU6RoC9XwAAsBcBpocCHSPA3i8AANiLANND7P0CAEDvYxKvBdj7BQCA3kWAsUigvV9qPE06UN+ojMRYQg0AABYiwNiEpdUAANiHOTA2YGk1AAD2IsDYgKXVAADYiwBjA5ZWAwBgLwKMDVhaDQCAvZjEaxOWVgMAYB8CjI0CLa0GAAA9xxASAAAIOwQYAAAQdggwFqjxNGnn/nr2eQEAoJd0O8CUlJTouuuuU2pqqhwOhzZt2tRh3X//93+Xw+HQY4895nf9yJEjKigoUFxcnOLj47Vw4UIdPXrUr84HH3ygq666SkOGDFFaWppWr17d3ab2ig3l1Zq2artueKZM01Zt14by6lA3CQCAfq/bAaaxsVETJ07U2rVrO6338ssv65133lFqamq7soKCAu3Zs0dbt27V5s2bVVJSoltuucUs93q9mjlzpkaPHq2Kigo9/PDDuu+++/T00093t7m2YsddAABCo9urkPLy8pSXl9dpnc8++0y33XabXn/9dc2ePduvbO/evdqyZYvKy8s1efJkSdITTzyha665Ro888ohSU1O1fv16NTc369lnn1VUVJQuuugiVVZW6tFHH/ULOqHW2Y67rD4CAMA+ls+B8fl8uvHGG7VkyRJddNFF7cpLS0sVHx9vhhdJysnJUUREhMrKysw606dPV1RUlFknNzdXVVVV+vLLLwO+7okTJ+T1ev1udmPHXQAAQsPyAPPQQw9p0KBB+tGPfhSw3O12Kykpye/aoEGDlJCQILfbbdZJTk72q9N2v63OmYqLi+V0Os1bWlpaT9/KWbHjLgAAoWHpRnYVFRV6/PHHtWvXLjkcjrM/wELLly/X4sWLzfter7dXQgw77gIA0PssDTB//vOfVVdXp/T0dPNaa2ur7rzzTj322GM6ePCgXC6X6urq/B538uRJHTlyRC6XS5LkcrlUW1vrV6ftfludM0VHRys6OtrKt9Nl7LgLAEDvsnQI6cYbb9QHH3ygyspK85aamqolS5bo9ddflyRlZ2eroaFBFRUV5uO2b98un8+nrKwss05JSYlaWlrMOlu3btWFF16oESNGWNlkAAAQhrrdA3P06FF98skn5v0DBw6osrJSCQkJSk9P18iRI/3qDx48WC6XSxdeeKEkafz48Zo1a5YWLVqkdevWqaWlRUVFRZo/f7655PqGG27Q/fffr4ULF2rp0qX68MMP9fjjj+vnP/95T94rAADoJ7odYN577z1dffXV5v22eScLFizQc88916XnWL9+vYqKijRjxgxFREQoPz9fa9asMcudTqf+9Kc/qbCwUJMmTVJiYqJWrlzZp5ZQAwCA0HEYhmGcvVr48Xq9cjqd8ng8iouLC3VzAABAF3T1+5uzkAAAQNghwAAAgLBDgLEZJ1UDAGA9S/eBgb8N5dXmYY8RDql4bqbmTUk/+wMBAECn6IGxCSdVAwBgHwKMTTo7qRoAAPQMAcYmnFQNAIB9CDA24aRqAADswyReG3FSNQAA9iDA2IyTqgEAsB5DSBZgrxcAAHoXPTA9xF4vAAD0PnpgeoC9XgAACA0CTA+w1wsAAKFBgOkB9noBACA0CDA9wF4vAACEBpN4e4i9XgAA6H0EGAuw1wsAAL2LISSbsDcMAAD2oQfGBuwNAwCAveiBsRh7wwAAYD8CjMXYGwYAAPsRYCzG3jAAANiPAGOxFGeMls4aZ/7FsjcMAADWI8BYbEN5tR7a8pF8khwO6a68C5nACwCAxQgwFjpzAq9hSKtfq2ICLwAAFiPAWIgJvAAA9A4CjIUCTeCVpA8+bej1tgAA0J8RYCyU4ozR0rxx7a6v3sIwEgAAViLAWCzzHGe7awwjAQBgLQKMxdgHBgAA+xFgLJbijFHx3ExFOk6lmEiHQ3fNulAH6hsZRgIAwCLdDjAlJSW67rrrlJqaKofDoU2bNpllLS0tWrp0qTIzMxUbG6vU1FTddNNNOnz4sN9zHDlyRAUFBYqLi1N8fLwWLlyoo0eP+tX54IMPdNVVV2nIkCFKS0vT6tWrg3uHITBvSrreWna1Xlw0VXflXaiHtnykG54p07RV27WhvDrUzQMAIOx1O8A0NjZq4sSJWrt2bbuyY8eOadeuXVqxYoV27dqljRs3qqqqSt/61rf86hUUFGjPnj3aunWrNm/erJKSEt1yyy1mudfr1cyZMzV69GhVVFTo4Ycf1n333aenn346iLcYGinOGI1JHKqHXvuIgx0BALDYoO4+IC8vT3l5eQHLnE6ntm7d6nftySef1BVXXKHq6mqlp6dr79692rJli8rLyzV58mRJ0hNPPKFrrrlGjzzyiFJTU7V+/Xo1Nzfr2WefVVRUlC666CJVVlbq0Ucf9Qs6fV1n+8JwtAAAAMGzfQ6Mx+ORw+FQfHy8JKm0tFTx8fFmeJGknJwcRUREqKyszKwzffp0RUVFmXVyc3NVVVWlL7/8MuDrnDhxQl6v1+/WW2o8Tdq5v75dzwoTegEAsIetAeb48eNaunSpvve97ykuLk6S5Ha7lZSU5Fdv0KBBSkhIkNvtNuskJyf71Wm731bnTMXFxXI6neYtLS3N6rcT0Ibyak1btT3gHJdAE3o52BEAgJ7r9hBSV7W0tOi73/2uDMPQU089ZdfLmJYvX67Fixeb971er+0h5syzj9rmuEwfO8oMKfOmpGv62FE6WH9MYxKHEl4AALCALQGmLbz8/e9/1/bt283eF0lyuVyqq6vzq3/y5EkdOXJELpfLrFNbW+tXp+1+W50zRUdHKzo62sq3cVZdneOS4owhuAAAYCHLh5Dawsu+ffv0v//7vxo5cqRfeXZ2thoaGlRRUWFe2759u3w+n7Kyssw6JSUlamlpMets3bpVF154oUaMGGF1k4PW0RyXoVERAefEAAAAa3Q7wBw9elSVlZWqrKyUJB04cECVlZWqrq5WS0uLvvOd7+i9997T+vXr1draKrfbLbfbrebmZknS+PHjNWvWLC1atEjvvvuu3n77bRUVFWn+/PlKTU2VJN1www2KiorSwoULtWfPHm3YsEGPP/643xBRXxBojsucy1J1/S92su8LAAA2chiGYZy92j+9+eabuvrqq9tdX7Bgge677z5lZGQEfNwbb7yhb3zjG5JObWRXVFSkV155RREREcrPz9eaNWs0bNgws/4HH3ygwsJClZeXKzExUbfddpuWLl3a5XZ6vV45nU55PB6/ISw71HiadLD+mIZGRej6X+z0G1aKdDj01rKrGUICAKALuvr93e0AEy56M8C02bm/Xjc8U9bu+ouLpir7/JEBHgEAAE7X1e9vzkKyEPu+AADQOwgwFmLfFwAAeodt+8AMVG37vuz6+5fyGYYmj0kIdZMAAOh3CDA2KPn4c3ODuwiHVDw3U/OmpIe6WQAA9BsMIVmso9152RMGAADrEGAs1tnuvAAAwBoEGIuxEgkAAPsRYCzGSiQAAOzHJF4bcAI1AAD2IsDYhBOoAQCwD0NIAAAg7BBgAABA2CHAAACAsEOAAQAAYYcAAwAAwg4BBgAAhB0CDAAACDsEGAAAEHYIMAAAIOwQYCxQ42nSzv31qvE0BVUOAAC6h6MEemhDebWWb9wtnyFFOKTiuZmaNyW9y+UAAKD7CDA9UONpMsOJJPkM6e6NH2qca7gam1sVGxUZsHz62FGckwQAQA8QYHrgQH2jGU7atBqG5qzdKUOSQ9IZxWo1DB2sP0aAAQCgB5gD0wMZibGKcLS/bpzx39NFOhwakzjUzmYBANDvEWB6IMUZo+K5mYp0nEoxgcLM6dcjHQ49OPdiel8AAOghhpB6aN6UdE0fO0oH649paFSErv/FTr9hpUiHQxt/mK1jzT6NSRxKeAEAwAIEGAukOGPMYFI8N1N3b/xQrYZh9rhMTBsR4hYCANC/EGAsdnqPDD0uAADYgwBjg9N7ZAAAgPWYxAsAAMIOAcYmHB8AAIB9GEKyAccHAABgr273wJSUlOi6665TamqqHA6HNm3a5FduGIZWrlyplJQUxcTEKCcnR/v27fOrc+TIERUUFCguLk7x8fFauHChjh496lfngw8+0FVXXaUhQ4YoLS1Nq1ev7v67C4GOjhegJwYAAOt0O8A0NjZq4sSJWrt2bcDy1atXa82aNVq3bp3KysoUGxur3NxcHT9+3KxTUFCgPXv2aOvWrdq8ebNKSkp0yy23mOVer1czZ87U6NGjVVFRoYcfflj33Xefnn766SDeYu/q6HiBg/XHQtMgAAD6oW4PIeXl5SkvLy9gmWEYeuyxx3TPPffo29/+tiTp17/+tZKTk7Vp0ybNnz9fe/fu1ZYtW1ReXq7JkydLkp544gldc801euSRR5Samqr169erublZzz77rKKionTRRRepsrJSjz76qF/Q6Yvajhc4czM7jg8AAMA6lk7iPXDggNxut3JycsxrTqdTWVlZKi0tlSSVlpYqPj7eDC+SlJOTo4iICJWVlZl1pk+frqioKLNObm6uqqqq9OWXXwZ87RMnTsjr9frdQuHM4wU4PgAAAOtZOonX7XZLkpKTk/2uJycnm2Vut1tJSUn+jRg0SAkJCX51MjIy2j1HW9mIEe13ti0uLtb9999vzRvpITazAwDAXv1mGfXy5cvl8XjM26FDh0LanhRnjLLPH0l4AQDABpYGGJfLJUmqra31u15bW2uWuVwu1dXV+ZWfPHlSR44c8asT6DlOf40zRUdHKy4uzu8GAAD6J0sDTEZGhlwul7Zt22Ze83q9KisrU3Z2tiQpOztbDQ0NqqioMOts375dPp9PWVlZZp2SkhK1tLSYdbZu3aoLL7ww4PARAAAYWLodYI4eParKykpVVlZKOjVxt7KyUtXV1XI4HLr99tv1wAMP6A9/+IN2796tm266SampqZozZ44kafz48Zo1a5YWLVqkd999V2+//baKioo0f/58paamSpJuuOEGRUVFaeHChdqzZ482bNigxx9/XIsXL7bsjQMAgDBmdNMbb7xhSGp3W7BggWEYhuHz+YwVK1YYycnJRnR0tDFjxgyjqqrK7zm++OIL43vf+54xbNgwIy4uzrj55puNr776yq/O+++/b1x55ZVGdHS0cc455xirVq3qVjs9Ho8hyfB4PN19iwAAIES6+v3tMAzD6CTfhC2v1yun0ymPx8N8GAAAwkRXv7/7zSokAAAwcBBgAABA2CHAAACAsEOAAQAAYYcA00M1nibt3F+vGk9TqJsCAMCAYelZSAPNhvJqLd+4Wz5DinBIxXMzNW9KeqibBQBAv0cPTJBqPE1meJEknyHdvfFDemIAAOgFBJggHahvNMNLm1bD0MH6Y6FpEAAAAwgBJkgZibGKcPhfi3Q4NCZxqN815sgAAGA9AkyQUpwxKp6bqUjHqRQT6XDowbkXK8UZY9bZUF6taau264ZnyjRt1XZtKK8OVXMBAOhXOEqgh2o8TTpYf0xjEoea4aXG06T3Dh7Rf/y20m+YKdLh0FvLrvYLOQAA4J+6+v3NKqQeSnHGtOt1OX1y7+na5sgQYAAA6BmGkCx05sqkMwWaIwMAALqPAGOhQCuT2gSaIwMAAILDEJKF2lYmnR5iIiQ9ccNlunz0CMILAAAWoQfGQoFWJhXnZ2r2JamEFwAALEQPjMXmTUnX9LGj2q1MAgAA1iHA2ODMlUkAAMBaDCEBAICwQ4ABAABhhwADAADCDgHGJhziCACAfZjEa4PTjxOIcEjFczM1b0p6qJsFAEC/QQ+Mxc48TsBnSHdv/JCeGAAALESAsVig4wTaDnEEAADWIMBYrO04gdNxiCMAANYiwFgs0HECHOIIAIC1mMRrA44TAADAXgQYm3CcAAAA9mEICQAAhB0CDAAACDsEGAAAEHYsDzCtra1asWKFMjIyFBMTo/PPP18//elPZRj/3BzFMAytXLlSKSkpiomJUU5Ojvbt2+f3PEeOHFFBQYHi4uIUHx+vhQsX6ujRo1Y3FwAAhCHLA8xDDz2kp556Sk8++aT27t2rhx56SKtXr9YTTzxh1lm9erXWrFmjdevWqaysTLGxscrNzdXx48fNOgUFBdqzZ4+2bt2qzZs3q6SkRLfccovVze0xzjwCAKD3OYzTu0YscO211yo5OVm//OUvzWv5+fmKiYnRb37zGxmGodTUVN1555368Y9/LEnyeDxKTk7Wc889p/nz52vv3r2aMGGCysvLNXnyZEnSli1bdM011+jTTz9VamrqWdvh9XrldDrl8XgUFxdn5Vs0ceYRAADW6ur3t+U9MF//+te1bds2ffzxx5Kk999/X2+99Zby8vIkSQcOHJDb7VZOTo75GKfTqaysLJWWlkqSSktLFR8fb4YXScrJyVFERITKysqsbnJQOPMIAIDQsXwfmGXLlsnr9WrcuHGKjIxUa2urfvazn6mgoECS5Ha7JUnJycl+j0tOTjbL3G63kpKS/Bs6aJASEhLMOmc6ceKETpw4Yd73er2WvadAOjvziP1fAACwl+U9ML/73e+0fv16vfDCC9q1a5eef/55PfLII3r++eetfik/xcXFcjqd5i0tLc3W1+PMIwAAQsfyALNkyRItW7ZM8+fPV2Zmpm688UbdcccdKi4uliS5XC5JUm1trd/jamtrzTKXy6W6ujq/8pMnT+rIkSNmnTMtX75cHo/HvB06dMjqt+anK2ceMcEXAAB7WD6EdOzYMUVE+OeiyMhI+Xw+SVJGRoZcLpe2bdumSy+9VNKp4Z6ysjLdeuutkqTs7Gw1NDSooqJCkyZNkiRt375dPp9PWVlZAV83Ojpa0dHRVr+dTnV25hETfAEAsI/lAea6667Tz372M6Wnp+uiiy7SX/7yFz366KP6t3/7N0mSw+HQ7bffrgceeEAXXHCBMjIytGLFCqWmpmrOnDmSpPHjx2vWrFlatGiR1q1bp5aWFhUVFWn+/PldWoHUmwKdedTRBN/pY0cxPwYAAAtYHmCeeOIJrVixQj/84Q9VV1en1NRU/eAHP9DKlSvNOnfddZcaGxt1yy23qKGhQVdeeaW2bNmiIUOGmHXWr1+voqIizZgxQxEREcrPz9eaNWusbq4tmOALAIC9LN8Hpq/ojX1gAqnxNOm9g0f0H7+t9AsxkQ6H3lp2NQEGAIBOdPX72/IemIHs9HkvDkkOh2QYgSf4AgCA4BFgLHLmvBdDUoQhPXnDZbp89AjCCwAAFuI0aosEmvfik5QQG014AQDAYgQYi7CxHQAAvYcAY5GubGwHAACswRwYC3W2sR0AALAOAcZigTa2AwAA1mIICQAAhB0CDAAACDsEGAAAEHYIMAAAIOwQYAAAQNghwAAAgLBDgLFRjadJO/fXq8bTFOqmAADQr7APjE1OP5k6wiEVz83UvCnpoW4WAAD9Aj0wNjjzZGqfId298UN6YgAAsAgBxgaBTqZuNQwdrD8WmgYBANDPEGBswMnUAADYiwBjA06mBgDAXkzitQknUwMAYB8CTA/VeJp0oL5RGYmx7UIKJ1MDAGAPAkwPsFQaAIDQYA5MkM62VJpN7AAAsA89MEHqbKl0ycef0zMDAICN6IEJUkdLpYdGRbCJHQAANiPABKmjpdKNza1sYgcAgM0YQuqBQEulazxNinDIL8SwiR0AANaiB6aHUpwxyj5/pLlcmk3sAACwHz0wNmATOwAA7EWAsQmb2AEAYB+GkCzG/i8AANiPHhgLsTMvAAC9gx4Yi5xtZ14AAGAdWwLMZ599pu9///saOXKkYmJilJmZqffee88sNwxDK1euVEpKimJiYpSTk6N9+/b5PceRI0dUUFCguLg4xcfHa+HChTp69KgdzbVEZzvzAgAAa1keYL788ktNmzZNgwcP1muvvaa//vWv+s///E+NGDHCrLN69WqtWbNG69atU1lZmWJjY5Wbm6vjx4+bdQoKCrRnzx5t3bpVmzdvVklJiW655Rarm2uZjnbmZf8XAACs5zAMwzh7ta5btmyZ3n77bf35z38OWG4YhlJTU3XnnXfqxz/+sSTJ4/EoOTlZzz33nObPn6+9e/dqwoQJKi8v1+TJkyVJW7Zs0TXXXKNPP/1UqampZ22H1+uV0+mUx+NRXFycdW+wExvKq3X3xg/Vahjm/i/MgQEAoOu6+v1teQ/MH/7wB02ePFn/8i//oqSkJF122WV65plnzPIDBw7I7XYrJyfHvOZ0OpWVlaXS0lJJUmlpqeLj483wIkk5OTmKiIhQWVlZwNc9ceKEvF6v3623zZuSrreWXa0XF03VW8uuJrwAAGATywPM3/72Nz311FO64IIL9Prrr+vWW2/Vj370Iz3//POSJLfbLUlKTk72e1xycrJZ5na7lZSU5Fc+aNAgJSQkmHXOVFxcLKfTad7S0tKsfmtdcubOvAAAwHqWBxifz6fLL79cDz74oC677DLdcsstWrRokdatW2f1S/lZvny5PB6PeTt06JCtrwcAAELH8gCTkpKiCRMm+F0bP368qqurJUkul0uSVFtb61entrbWLHO5XKqrq/MrP3nypI4cOWLWOVN0dLTi4uL8bgAAoH+yPMBMmzZNVVVVftc+/vhjjR49WpKUkZEhl8ulbdu2meVer1dlZWXKzs6WJGVnZ6uhoUEVFRVmne3bt8vn8ykrK8vqJgMAgDBj+U68d9xxh77+9a/rwQcf1He/+129++67evrpp/X0009LkhwOh26//XY98MADuuCCC5SRkaEVK1YoNTVVc+bMkXSqx2bWrFnm0FNLS4uKioo0f/78Lq1AAgAA/Zvly6glafPmzVq+fLn27dunjIwMLV68WIsWLTLLDcPQvffeq6effloNDQ268sor9Ytf/EJjx4416xw5ckRFRUV65ZVXFBERofz8fK1Zs0bDhg3rUhtCsYwaAAD0TFe/v20JMH0BAQYAgPATsn1gAAAA7EaAAQAAYYcAY4MaT5N27q/nJGoAAGxi+SqkgW5DebWWb9wtnyFFOKSleeOUeY5TGYmx7M4LAIBFCDAWqvE0meFFknyGVPzHjySdCjPFczM5HwkAAAswhNRDpw8XHahvNMPLmXyGdPfGDxlWAgDAAvTA9EC74aJZ4xThUIchptUwdLD+GENJAAD0ED0wQQo0XLR6S5WW5o1TpMMR8DGRDofGJA7txVYCANA/0QMTpEDDRa2GoUvOiddby67Wwfpj+uDTBq3eUqVWw1Ckw6EH515M7wsAABYgwAQpIzG23XBRWw9LijNGKc4YZZ8/Ut+6NFUH64+Z1wEAQM8xhBSkFGeMiudmmsNFHfWwtAUZwgsAANahB6YH5k1J1/Sxo+hhAQCglxFgeqhtuEiSuZSaTesAALAXAcYiZy6pZtM6AADswxwYCwRaUs2mdQAA2IcAY4GOllQfrD8WmgYBANDPEWAs0Lak+nRsWgcAgH0IMBbo6pJqAABgDSbxWoQl1QAA9B4CjIVOX1INAADswxASAAAIOwQYC9V4mrRzfz3LpwEAsBlDSBZhIzsAAHoPPTAWYCM7AAB6FwHGAmxkBwBA7yLAWICN7AAA6F0EGAuwkR0AAL2LSbwWYSM7AAB6DwHGQmxkBwBA72AICQAAhB0CDAAACDsEmB5i910AAHqf7QFm1apVcjgcuv32281rx48fV2FhoUaOHKlhw4YpPz9ftbW1fo+rrq7W7NmzNXToUCUlJWnJkiU6efKk3c3tlg3l1Zq2artueKZM01Zt13+V7A8YZgg5AABYy9ZJvOXl5fqv//ovXXLJJX7X77jjDr366qt66aWX5HQ6VVRUpLlz5+rtt9+WJLW2tmr27NlyuVzauXOnampqdNNNN2nw4MF68MEH7WxylwXafbf4jx9J8j9KgCMGAACwnm09MEePHlVBQYGeeeYZjRgxwrzu8Xj0y1/+Uo8++qi++c1vatKkSfrVr36lnTt36p133pEk/elPf9Jf//pX/eY3v9Gll16qvLw8/fSnP9XatWvV3NxsV5O7JdDuu23ajhJ4/9CXHDEAAIANbAswhYWFmj17tnJycvyuV1RUqKWlxe/6uHHjlJ6ertLSUklSaWmpMjMzlZycbNbJzc2V1+vVnj17Ar7eiRMn5PV6/W52CrT77ulaDUPlB7/kiAEAAGxgS4D57W9/q127dqm4uLhdmdvtVlRUlOLj4/2uJycny+12m3VODy9t5W1lgRQXF8vpdJq3tLQ0C95Jx9p23+1IpMOhKWNGcMQAAAA2sDzAHDp0SP/xH/+h9evXa8iQIVY/fYeWL18uj8dj3g4dOmT7a/71s457eR6ce7Empo3giAEAAGxg+STeiooK1dXV6fLLLzevtba2qqSkRE8++aRef/11NTc3q6Ghwa8Xpra2Vi6XS5Lkcrn07rvv+j1v2yqltjpnio6OVnR0tMXvpmM1niY9/87fA5blXZxsTtTliAEAAKxneQ/MjBkztHv3blVWVpq3yZMnq6CgwPzz4MGDtW3bNvMxVVVVqq6uVnZ2tiQpOztbu3fvVl1dnVln69atiouL04QJE6xuclAq/v5lh2XHmlv97qc4Y5R9/kjCCwAAFrG8B2b48OG6+OKL/a7FxsZq5MiR5vWFCxdq8eLFSkhIUFxcnG677TZlZ2dr6tSpkqSZM2dqwoQJuvHGG7V69Wq53W7dc889Kiws7NVels4YRgdLkCT9ed+pPV8ILAAA2CMkhzn+/Oc/V0REhPLz83XixAnl5ubqF7/4hVkeGRmpzZs369Zbb1V2drZiY2O1YMEC/eQnPwlFcwNKT+h4Iq7PkA7WHyPAAABgE4fRWVdCGPN6vXI6nfJ4PIqLi7P8+Xfur9cNz5QFLItwSG8v+yYBBgCAburq9zdnIQWpqbnjYw2W5o0jvAAAYCMCTJD+Vt8Y8PqMcUn6wfTze7k1AAAMLASYIMXHDA54fdbFyQGvAwAA6xBggtTQ1BLw+vufejjrCAAAmxFggtRRD8xv3qnWtFXbtaG8updbBADAwEGACVJHPTASp04DAGA3AkyQzkuM7bScU6cBALAPASZITS2+Tss5dRoAAPsQYILU2f5/nDoNAIC9QnKUQH8wNCoy4PUfTM/Qv07LILwAAGAjemCC1NFGdk+XHFDJx5/3cmsAABhYCDBB6mgSr6HAK5BqPE3aub+elUkAAFiAIaQgHfYc77CsbQVS2zDShvJqLd+4Wz7j1EGPxXMzNW9Kem81FQCAfocemCDtrzvaYdnpK5BqPE1meJHYIwYAACsQYIKUOCy6w7I5l6WavS8H6hvN8NKGPWIAAOgZAkyQ4mI6Hn3b9JfDZg9LRmKsIhz+5ewRAwBAzxBggpQQ23EPzOk9LCnOGBXPzVSk41SKYY8YAAB6jkm8QYoZ3HH2O7OHZd6UdE0fO0oH649pTOJQwgsAAD1EgAlSR/vASArYw5LijCG4AABgEYaQghQfMzjUTQAAYMAiwASpoamlwzKWSQMAYC8CTJA664FhmTQAAPYiwASp+kjHASVCYpk0AAA2IsAEacigwKdRS9KVFyQyYRcAABsRYIJkODoue2sfhzYCAGAnAkyQ3vzo8w7LfBJzYAAAsBEBJgg1nia99/cvOyxnDgwAAPYiwAThvYNHOi2fn5UWcA5MjadJO/czvAQAQE+xE28QOtsDRpLOiW8fXjaUV2v5xt3yGVKEQyqem6l5U9LtaiIAAP0aPTA2aD7p87tf42kyw4sk+Qw2uwMAoCcIMDb45rgkv/sH6hvN8NKGze4AAAgeAcYGSXFD/O5nJMYq4oxl12eeWA0AALrO8gBTXFysKVOmaPjw4UpKStKcOXNUVVXlV+f48eMqLCzUyJEjNWzYMOXn56u2ttavTnV1tWbPnq2hQ4cqKSlJS5Ys0cmTJ61ublA8Z5kDc2bPSoozRsVzMxXpOJViIh2OgCdWAwCArrF8Eu+OHTtUWFioKVOm6OTJk7r77rs1c+ZM/fWvf1VsbKwk6Y477tCrr76ql156SU6nU0VFRZo7d67efvttSVJra6tmz54tl8ulnTt3qqamRjfddJMGDx6sBx980Oomd9sXR5s7LOuoZ2XelHRNHztKB+uPaUziUMILAAA94DAMwzh7teB9/vnnSkpK0o4dOzR9+nR5PB6NGjVKL7zwgr7zne9Ikj766CONHz9epaWlmjp1ql577TVde+21Onz4sJKTkyVJ69at09KlS/X5558rKirqrK/r9XrldDrl8XgUFxdn6Xt6cvs+PfKnj9tdd0halc/qIgAAgtXV72/b58B4PB5JUkJCgiSpoqJCLS0tysnJMeuMGzdO6enpKi0tlSSVlpYqMzPTDC+SlJubK6/Xqz179gR8nRMnTsjr9frdbNPBMQIFU9MILwAA9AJbA4zP59Ptt9+uadOm6eKLL5Ykud1uRUVFKT4+3q9ucnKy3G63Wef08NJW3lYWSHFxsZxOp3lLS0uz+N38U0dDSOvfOaQN5dW2vS4AADjF1gBTWFioDz/8UL/97W/tfBlJ0vLly+XxeMzboUOHbHutkbGBh7AMsb8LAAC9wbYAU1RUpM2bN+uNN97Queeea153uVxqbm5WQ0ODX/3a2lq5XC6zzpmrktrut9U5U3R0tOLi4vxudnEOHdxhGfu7AABgP8sDjGEYKioq0ssvv6zt27crIyPDr3zSpEkaPHiwtm3bZl6rqqpSdXW1srOzJUnZ2dnavXu36urqzDpbt25VXFycJkyYYHWTLXW2/V04DwkAgJ6zfBl1YWGhXnjhBf3+97/X8OHDzTkrTqdTMTExcjqdWrhwoRYvXqyEhATFxcXptttuU3Z2tqZOnSpJmjlzpiZMmKAbb7xRq1evltvt1j333KPCwkJFR0db3WRL3ZV3YYdLpDkPCQAAa1jeA/PUU0/J4/HoG9/4hlJSUszbhg0bzDo///nPde211yo/P1/Tp0+Xy+XSxo0bzfLIyEht3rxZkZGRys7O1ve//33ddNNN+slPfmJ1cy13TgfhhfOQAACwjuU9MF3ZVmbIkCFau3at1q5d22Gd0aNH649//KOVTesVjg6WWHd2HhKb2gFA+KvxNOlAfaMyEmP7/f/X+8J7tTzADHSXjx4R8HrbeUinhxjOQwKA/mEgTRHoK++Vwxwt1EHniyTOQwKA/qovThGwa8FIX3qv9MBYyJA6HRLiPCQAXdEXuufRdX1tioCdPSR96b0SYILQ2WnUZxsSSnHG8D8kAB3qK93z6Lq+NEWgox6S6WNHWfLd05feK0NIQWg+6euwrM57vNPHsg8MgI70pe55dF1fmiLQWQ+JFfrSe6UHJggzxiVpzbZPApZt+sthTUwLPJGX36wAdKYvdc+je/rKFIHe6CHpK++VHpggTEwboXOcQwKW1TcG7oHhNyuEEj1/4aHty+d0/Xm1Yn/7d5nijFH2+SNDGjZ7q4ekL7xXemCCNC5luD7ztA8rTc2tAevzmxVChZ6/8NH25XP3xg/Vahj9erUi/y7t01d6SOxGgAlS44mTAa9XHmoIeL0vTXzCwGH3hD5YbyB8+fDv0n4DYcEIQ0hBSh8ZG/B6/dEWvX/oy3bX+9LEJwwcdk/ogz36Qve8nfh3CSvQAxOk3IuS9bv3Pg1Y9u21O3Vw1ex216ePHaXH5k9UhMOhy0eP6Lf/c+ot7JVxdvT8oS/i3yWsQA9MkI51MNelTcHTpX73N5RXa9qq7brtxUrd9uJfVPLx53Y2r99r+/u84ZkyTVu1XRvKq0PdpD5poPf89bdJov3FQP93CWvQAxOkhmMdb2YnSWUHjph/ZrzXWvx9ds9AmFMRCJNE+7aB+u8S1qEHJkjxQwd3Wj4o8p9/Drfx3r7+W2u4/X32Bf19TsWZ2LYgPAy0f5ewFj0wQZo8JqHT8uOnLVIKp/HecPitNZz+PhEabFsA9H/0wASpO/8TTHHGaGneOHODKivHe63sLQmX31r74/h5X+/1CjcDbUM4YCCiByZIZ/uiiR/yz7/aDeXVeui1j+QzJIeku2Zd2KVejbOtsrG6tyScfmvtT+Pn4dDrFW4G0oZwwEBFgAnSgfrGTssX/T/nSWrfq2FIWr2lSt+6NLXD/5nWeJr0xPZP9GJZtQyd+lJbmjdOmec4zTBjx0TWcBua6Q8bNTEh2T79KeQCaI8AE6SMxMAb2bVxxpya5NvdXo0N5dVa+j+7/a75DKn4jx9J+udv6GkJQwM+766/f6kRscHtjdKXfmsdKHu8hFOvVzjqDyEXQGAEGJvt/tTT7lpHvRptv413pu039KdvujxgeeELf5EU/FBEX/itdSANqYRbrxcA9BVM4g3S2YaQPE2njhRY9dpH7crmTTnX737bBM73Dh5p99t4IK2GoQNnWTLc0wm4hrrQEBuEy0Riq/THCckA0BvogQlSbFRkp+V/qPxMD7/+ccCyF949pN+WH1Lx3ExJ8uttcEhnjQ4RDikjcWi739zPFMxQRKh7PwbikEpf6PUCgHBDD0yQil/d22l5VW3nPTQ+41RwWfY//r0NgVycGmf+ht5W7/88X6HrLzun3VLR00VI+qLxRJd7L/pC78dAXf7Khl4A0D0EmCC9c7D9idPd5TPa97YEyjB7a75qN+fFkLRx12d6KD+zw+c3JBW98JcunxXUF3a4ZUgFANAVDCEFwaoeiQiHZAQIMWdqNQy9f6ih3XVD0pL/v+NJv23P29WluX1lQilDKgCAs6EHJgjvHTxy9kpn4fjH/JJV+ZmdDgNJp0LEqLghPXq9rvSk9KXeD4ZUAACdoQcmCA7HWRJHV57DkNkjMs41XHPW7gzYE9MWIqaPHaWVm/YEvTaoqz0p9H4AAMIBASYId274S7fqn5c4VH87o/fDJ5krayamjdCqfP8N5O6adaEuOTfeL0Ssys/0WyHUleEnqfs9KWz+BQDo6wgw3TRm2avdfszf6o+ddW5JV3o+zqxT8vHnZuhx/CPQtHFIWnbNOF1yTjw9KQCAfocA0w3j7ul+eGnzf648T79860CnW/R3pefj9DpnBhpJ2vX3L2UY0qQxIwgtAIB+iwDTDcdPBv/Yd/5Wr3NGRCtp+BCdN2qYmk/6tG2vW+9/6lHisCjFDI7Uzv1faNTwKMXFRKn5pE8zxiVpYtqITp/3zNAz+xJCCwCg/3MYhhHsvNA+zev1yul0yuPxKC4uzpLnDGb4qKfyLz9H//ndS3v9dQEACIWufn/36WXUa9eu1ZgxYzRkyBBlZWXp3XffDXWTet3/7PpM7x/q+aZ5AAD0J302wGzYsEGLFy/Wvffeq127dmnixInKzc1VXV1dyNoUFaK/rfcs2PUXAID+pM8GmEcffVSLFi3SzTffrAkTJmjdunUaOnSonn322ZC1qdkXmtedPKbzeTAAAAw0fTLANDc3q6KiQjk5Oea1iIgI5eTkqLS0NOBjTpw4Ia/X63frD/IvP+esE3kBABho+uQqpPr6erW2tio5OdnvenJysj766KOAjykuLtb999/fG807q0iHQzdmp8vtOa6TPp9iBkfK7TmuI8eadUHSMKU4h+r8pFilOIfog089ShwWrSGDI/TO375Q4rBoxcUMVvNJn77ZhVVIAAAMRH0ywARj+fLlWrx4sXnf6/UqLS2t117f4ZCW5XV/47gZ413mn/9lcrpdzQMAoF/pkwEmMTFRkZGRqq2t9bteW1srl8sV8DHR0dGKjo62tV0HV80OuJQ6aXiUfl90JRvHAQDQS/rkHJioqChNmjRJ27ZtM6/5fD5t27ZN2dnZIWzZqRBzuoe/k6l3/7//l/ACAEAv6pM9MJK0ePFiLViwQJMnT9YVV1yhxx57TI2Njbr55ptD3bR2IQYAAPSuPhtg5s2bp88//1wrV66U2+3WpZdeqi1btrSb2AsAAAYejhIAAAB9Rr84SgAAACAQAgwAAAg7BBgAABB2CDAAACDsEGAAAEDYIcAAAICwQ4ABAABhhwADAADCDgEGAACEnT57lEBPtW0w7PV6Q9wSAADQVW3f22c7KKDfBpivvvpKkpSWlhbilgAAgO766quv5HQ6Oyzvt2ch+Xw+HT58WMOHD5fD4bD0ub1er9LS0nTo0CHOWeqj+Bn1ffyM+j5+Rn1ff/wZGYahr776SqmpqYqI6HimS7/tgYmIiNC5555r62vExcX1m38w/RU/o76Pn1Hfx8+o7+tvP6POel7aMIkXAACEHQIMAAAIOwSYIERHR+vee+9VdHR0qJuCDvAz6vv4GfV9/Iz6voH8M+q3k3gBAED/RQ8MAAAIOwQYAAAQdggwAAAg7BBgAABA2CHAdNPatWs1ZswYDRkyRFlZWXr33XdD3ST8w3333SeHw+F3GzduXKibNaCVlJTouuuuU2pqqhwOhzZt2uRXbhiGVq5cqZSUFMXExCgnJ0f79u0LTWMHqLP9jP71X/+13edq1qxZoWnsAFVcXKwpU6Zo+PDhSkpK0pw5c1RVVeVX5/jx4yosLNTIkSM1bNgw5efnq7a2NkQt7h0EmG7YsGGDFi9erHvvvVe7du3SxIkTlZubq7q6ulA3Df9w0UUXqaamxry99dZboW7SgNbY2KiJEydq7dq1ActXr16tNWvWaN26dSorK1NsbKxyc3N1/PjxXm7pwHW2n5EkzZo1y+9z9eKLL/ZiC7Fjxw4VFhbqnXfe0datW9XS0qKZM2eqsbHRrHPHHXfolVde0UsvvaQdO3bo8OHDmjt3bghb3QsMdNkVV1xhFBYWmvdbW1uN1NRUo7i4OIStQpt7773XmDhxYqibgQ5IMl5++WXzvs/nM1wul/Hwww+b1xoaGozo6GjjxRdfDEELcebPyDAMY8GCBca3v/3tkLQHgdXV1RmSjB07dhiGcepzM3jwYOOll14y6+zdu9eQZJSWloaqmbajB6aLmpubVVFRoZycHPNaRESEcnJyVFpaGsKW4XT79u1TamqqzjvvPBUUFKi6ujrUTUIHDhw4ILfb7feZcjqdysrK4jPVx7z55ptKSkrShRdeqFtvvVVffPFFqJs0oHk8HklSQkKCJKmiokItLS1+n6Vx48YpPT29X3+WCDBdVF9fr9bWViUnJ/tdT05OltvtDlGrcLqsrCw999xz2rJli5566ikdOHBAV111lb766qtQNw0BtH1u+Ez1bbNmzdKvf/1rbdu2TQ899JB27NihvLw8tba2hrppA5LP59Ptt9+uadOm6eKLL5Z06rMUFRWl+Ph4v7r9/bPUb0+jxsCTl5dn/vmSSy5RVlaWRo8erd/97ndauHBhCFsGhK/58+ebf87MzNQll1yi888/X2+++aZmzJgRwpYNTIWFhfrwww+Z3yd6YLosMTFRkZGR7WZ119bWyuVyhahV6Ex8fLzGjh2rTz75JNRNQQBtnxs+U+HlvPPOU2JiIp+rECgqKtLmzZv1xhtv6NxzzzWvu1wuNTc3q6Ghwa9+f/8sEWC6KCoqSpMmTdK2bdvMaz6fT9u2bVN2dnYIW4aOHD16VPv371dKSkqom4IAMjIy5HK5/D5TXq9XZWVlfKb6sE8//VRffPEFn6teZBiGioqK9PLLL2v79u3KyMjwK580aZIGDx7s91mqqqpSdXV1v/4sMYTUDYsXL9aCBQs0efJkXXHFFXrsscfU2Niom2++OdRNg6Qf//jHuu666zR69GgdPnxY9957ryIjI/W9730v1E0bsI4ePer3m/qBAwdUWVmphIQEpaen6/bbb9cDDzygCy64QBkZGVqxYoVSU1M1Z86c0DV6gOnsZ5SQkKD7779f+fn5crlc2r9/v+666y597WtfU25ubghbPbAUFhbqhRde0O9//3sNHz7cnNfidDoVExMjp9OphQsXavHixUpISFBcXJxuu+02ZWdna+rUqSFuvY1CvQwq3DzxxBNGenq6ERUVZVxxxRXGO++8E+om4R/mzZtnpKSkGFFRUcY555xjzJs3z/jkk09C3awB7Y033jAktbstWLDAMIxTS6lXrFhhJCcnG9HR0caMGTOMqqqq0DZ6gOnsZ3Ts2DFj5syZxqhRo4zBgwcbo0ePNhYtWmS43e5QN3tACfTzkWT86le/Mus0NTUZP/zhD40RI0YYQ4cONa6//nqjpqYmdI3uBQ7DMIzej00AAADBYw4MAAAIOwQYAAAQdggwAAAg7BBgAABA2CHAAACAsEOAAQAAYYcAAwAAwg4BBgAAhB0CDAAACDsEGAAAEHYIMAAAIOwQYAAAQNj5v6+qkab7taCrAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(y.transpose()[1], out[0], '.')" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:59:06.964745Z", - "start_time": "2024-02-19T17:59:06.882011Z" - } - }, - "id": "fd7da6798c8b7097", - "execution_count": 81 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "enet = ElasticNet(fit_intercept=False, alpha=alpha, l1_ratio=rho)" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T17:59:21.504500Z", - "start_time": "2024-02-19T17:59:21.498338Z" - } - }, - "id": "fc4567ee543c52d6", - "execution_count": 82 - }, - { - "cell_type": "code", - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.758e-02, tolerance: 5.692e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.033e-02, tolerance: 5.834e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.323e-02, tolerance: 5.989e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.621e-02, tolerance: 6.153e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.927e-02, tolerance: 6.325e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.238e-02, tolerance: 6.501e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.549e-02, tolerance: 6.679e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.862e-02, tolerance: 6.859e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.176e-02, tolerance: 7.039e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.507e-02, tolerance: 7.216e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.842e-02, tolerance: 7.386e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.167e-02, tolerance: 7.549e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.475e-02, tolerance: 7.705e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.766e-02, tolerance: 7.854e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.005e-01, tolerance: 7.999e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.033e-01, tolerance: 8.142e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.069e-01, tolerance: 8.282e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.112e-01, tolerance: 8.422e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.156e-01, tolerance: 8.561e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.199e-01, tolerance: 8.698e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.240e-01, tolerance: 8.832e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.278e-01, tolerance: 8.959e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.310e-01, tolerance: 9.074e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.337e-01, tolerance: 9.175e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.359e-01, tolerance: 9.260e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.377e-01, tolerance: 9.327e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.391e-01, tolerance: 9.376e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.399e-01, tolerance: 9.406e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.402e-01, tolerance: 9.420e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.403e-01, tolerance: 9.423e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.403e-01, tolerance: 9.424e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.405e-01, tolerance: 9.429e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.407e-01, tolerance: 9.439e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.411e-01, tolerance: 9.453e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.416e-01, tolerance: 9.470e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.421e-01, tolerance: 9.490e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.427e-01, tolerance: 9.512e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.432e-01, tolerance: 9.529e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.432e-01, tolerance: 9.532e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.426e-01, tolerance: 9.509e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.412e-01, tolerance: 9.454e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.389e-01, tolerance: 9.369e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.361e-01, tolerance: 9.265e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.338e-01, tolerance: 9.177e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.341e-01, tolerance: 9.190e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.430e-01, tolerance: 9.523e-02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.750e-01, tolerance: 1.067e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.629e-01, tolerance: 1.349e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.302e-01, tolerance: 1.888e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.672e-01, tolerance: 2.683e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.173e-01, tolerance: 3.592e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.133e+00, tolerance: 4.457e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.506e+00, tolerance: 5.159e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.730e+00, tolerance: 5.564e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.774e+00, tolerance: 5.641e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.744e+00, tolerance: 5.589e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.825e+00, tolerance: 5.730e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.167e+00, tolerance: 6.330e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.853e+00, tolerance: 7.534e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.063e+00, tolerance: 9.426e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.938e+00, tolerance: 1.217e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.834e+00, tolerance: 1.605e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.276e+01, tolerance: 2.090e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.646e+01, tolerance: 2.512e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.717e+01, tolerance: 2.593e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.390e+01, tolerance: 2.222e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.995e+00, tolerance: 1.625e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.080e+00, tolerance: 1.093e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.733e+00, tolerance: 7.332e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.503e+00, tolerance: 5.154e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.905e-01, tolerance: 3.849e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.611e-01, tolerance: 3.043e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.359e-01, tolerance: 2.574e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.882e-01, tolerance: 2.415e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.313e-01, tolerance: 2.558e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.311e-01, tolerance: 2.927e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.537e-01, tolerance: 3.373e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.667e-01, tolerance: 3.764e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.040e+00, tolerance: 4.036e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.064e+00, tolerance: 4.130e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.018e+00, tolerance: 3.952e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.873e-01, tolerance: 3.489e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.197e-01, tolerance: 2.884e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.579e-01, tolerance: 2.316e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.274e-01, tolerance: 1.879e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.350e-01, tolerance: 1.575e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.690e-01, tolerance: 1.368e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.214e-01, tolerance: 1.217e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.861e-01, tolerance: 1.103e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.639e-01, tolerance: 1.028e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.590e-01, tolerance: 1.011e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.768e-01, tolerance: 1.073e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.277e-01, tolerance: 1.238e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.180e-01, tolerance: 1.521e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.415e-01, tolerance: 1.926e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.941e-01, tolerance: 2.434e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.576e-01, tolerance: 3.029e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.397e-01, tolerance: 3.670e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.079e+00, tolerance: 4.194e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.108e+00, tolerance: 4.346e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.038e+00, tolerance: 4.026e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.660e-01, tolerance: 3.416e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.880e-01, tolerance: 2.761e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.221e-01, tolerance: 2.199e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.005e-01, tolerance: 1.789e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.251e-01, tolerance: 1.544e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.934e-01, tolerance: 1.443e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.967e-01, tolerance: 1.453e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.303e-01, tolerance: 1.560e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.971e-01, tolerance: 1.777e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.054e-01, tolerance: 2.144e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.830e-01, tolerance: 2.742e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.478e-01, tolerance: 3.698e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.529e+00, tolerance: 5.201e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.876e+00, tolerance: 7.572e-01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.452e+00, tolerance: 1.147e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.058e+01, tolerance: 1.824e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.120e+01, tolerance: 3.037e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.340e+01, tolerance: 5.254e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.000e+01, tolerance: 9.333e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.844e+02, tolerance: 1.671e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.611e+02, tolerance: 2.931e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.519e+02, tolerance: 4.871e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.060e+03, tolerance: 7.471e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.542e+03, tolerance: 1.044e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.009e+03, tolerance: 1.326e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.362e+03, tolerance: 1.537e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.514e+03, tolerance: 1.627e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.424e+03, tolerance: 1.574e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.115e+03, tolerance: 1.390e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.673e+03, tolerance: 1.124e+02\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.206e+03, tolerance: 8.375e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.979e+02, tolerance: 5.812e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.937e+02, tolerance: 3.830e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.957e+02, tolerance: 2.476e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.803e+02, tolerance: 1.640e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.174e+02, tolerance: 1.156e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.376e+01, tolerance: 8.812e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.563e+01, tolerance: 7.261e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.569e+01, tolerance: 6.384e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.027e+01, tolerance: 5.892e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.735e+01, tolerance: 5.623e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.580e+01, tolerance: 5.478e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.499e+01, tolerance: 5.403e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.460e+01, tolerance: 5.367e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.448e+01, tolerance: 5.355e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.455e+01, tolerance: 5.362e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.478e+01, tolerance: 5.384e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.518e+01, tolerance: 5.421e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.577e+01, tolerance: 5.476e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.658e+01, tolerance: 5.552e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.768e+01, tolerance: 5.653e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.910e+01, tolerance: 5.785e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.094e+01, tolerance: 5.953e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.327e+01, tolerance: 6.166e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.624e+01, tolerance: 6.433e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.997e+01, tolerance: 6.765e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.458e+01, tolerance: 7.169e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.012e+01, tolerance: 7.651e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.664e+01, tolerance: 8.211e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.414e+01, tolerance: 8.844e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.253e+01, tolerance: 9.543e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.017e+02, tolerance: 1.029e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.114e+02, tolerance: 1.107e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.213e+02, tolerance: 1.187e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.313e+02, tolerance: 1.265e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.409e+02, tolerance: 1.340e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.496e+02, tolerance: 1.408e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.568e+02, tolerance: 1.463e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.620e+02, tolerance: 1.502e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.652e+02, tolerance: 1.526e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.662e+02, tolerance: 1.534e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.649e+02, tolerance: 1.524e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.612e+02, tolerance: 1.496e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.557e+02, tolerance: 1.454e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.488e+02, tolerance: 1.401e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.410e+02, tolerance: 1.340e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.323e+02, tolerance: 1.273e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.232e+02, tolerance: 1.201e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.140e+02, tolerance: 1.129e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.052e+02, tolerance: 1.058e+01\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.688e+01, tolerance: 9.900e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.915e+01, tolerance: 9.262e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.204e+01, tolerance: 8.667e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.562e+01, tolerance: 8.123e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.990e+01, tolerance: 7.632e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.484e+01, tolerance: 7.193e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.037e+01, tolerance: 6.800e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.644e+01, tolerance: 6.451e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.301e+01, tolerance: 6.142e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.002e+01, tolerance: 5.869e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.742e+01, tolerance: 5.630e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.515e+01, tolerance: 5.418e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.315e+01, tolerance: 5.231e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.137e+01, tolerance: 5.062e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.974e+01, tolerance: 4.908e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.820e+01, tolerance: 4.760e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.669e+01, tolerance: 4.614e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.516e+01, tolerance: 4.466e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.360e+01, tolerance: 4.313e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.203e+01, tolerance: 4.157e+00\n", - " model = cd_fast.enet_coordinate_descent(\n", - "/Users/jhughes/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.048e+01, tolerance: 4.000e+00\n", - " model = cd_fast.enet_coordinate_descent(\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)", - "Cell \u001B[0;32mIn[83], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43menet\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mX\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m425\u001B[39;49m\u001B[43m]\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mreshape\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m-\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43my\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtranspose\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m425\u001B[39;49m\u001B[43m]\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mreshape\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m-\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n", - "File \u001B[0;32m~/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/base.py:1474\u001B[0m, in \u001B[0;36m_fit_context..decorator..wrapper\u001B[0;34m(estimator, *args, **kwargs)\u001B[0m\n\u001B[1;32m 1467\u001B[0m estimator\u001B[38;5;241m.\u001B[39m_validate_params()\n\u001B[1;32m 1469\u001B[0m \u001B[38;5;28;01mwith\u001B[39;00m config_context(\n\u001B[1;32m 1470\u001B[0m skip_parameter_validation\u001B[38;5;241m=\u001B[39m(\n\u001B[1;32m 1471\u001B[0m prefer_skip_nested_validation \u001B[38;5;129;01mor\u001B[39;00m global_skip_validation\n\u001B[1;32m 1472\u001B[0m )\n\u001B[1;32m 1473\u001B[0m ):\n\u001B[0;32m-> 1474\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfit_method\u001B[49m\u001B[43m(\u001B[49m\u001B[43mestimator\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n", - "File \u001B[0;32m~/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:1050\u001B[0m, in \u001B[0;36mElasticNet.fit\u001B[0;34m(self, X, y, sample_weight, check_input)\u001B[0m\n\u001B[1;32m 1048\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1049\u001B[0m this_Xy \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[0;32m-> 1050\u001B[0m _, this_coef, this_dual_gap, this_iter \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpath\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1051\u001B[0m \u001B[43m \u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1052\u001B[0m \u001B[43m \u001B[49m\u001B[43my\u001B[49m\u001B[43m[\u001B[49m\u001B[43m:\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mk\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1053\u001B[0m \u001B[43m \u001B[49m\u001B[43ml1_ratio\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43ml1_ratio\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1054\u001B[0m \u001B[43m \u001B[49m\u001B[43meps\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1055\u001B[0m \u001B[43m \u001B[49m\u001B[43mn_alphas\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1056\u001B[0m \u001B[43m \u001B[49m\u001B[43malphas\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m[\u001B[49m\u001B[43malpha\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1057\u001B[0m \u001B[43m \u001B[49m\u001B[43mprecompute\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mprecompute\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1058\u001B[0m \u001B[43m \u001B[49m\u001B[43mXy\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mthis_Xy\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1059\u001B[0m \u001B[43m \u001B[49m\u001B[43mcopy_X\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1060\u001B[0m \u001B[43m \u001B[49m\u001B[43mcoef_init\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcoef_\u001B[49m\u001B[43m[\u001B[49m\u001B[43mk\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1061\u001B[0m \u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1062\u001B[0m \u001B[43m \u001B[49m\u001B[43mreturn_n_iter\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1063\u001B[0m \u001B[43m \u001B[49m\u001B[43mpositive\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpositive\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1064\u001B[0m \u001B[43m \u001B[49m\u001B[43mcheck_input\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1065\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;66;43;03m# from here on **params\u001B[39;49;00m\n\u001B[1;32m 1066\u001B[0m \u001B[43m \u001B[49m\u001B[43mtol\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtol\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1067\u001B[0m \u001B[43m \u001B[49m\u001B[43mX_offset\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mX_offset\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1068\u001B[0m \u001B[43m \u001B[49m\u001B[43mX_scale\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mX_scale\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1069\u001B[0m \u001B[43m \u001B[49m\u001B[43mmax_iter\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmax_iter\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1070\u001B[0m \u001B[43m \u001B[49m\u001B[43mrandom_state\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrandom_state\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1071\u001B[0m \u001B[43m \u001B[49m\u001B[43mselection\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mselection\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1072\u001B[0m \u001B[43m \u001B[49m\u001B[43msample_weight\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msample_weight\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1073\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1074\u001B[0m coef_[k] \u001B[38;5;241m=\u001B[39m this_coef[:, \u001B[38;5;241m0\u001B[39m]\n\u001B[1;32m 1075\u001B[0m dual_gaps_[k] \u001B[38;5;241m=\u001B[39m this_dual_gap[\u001B[38;5;241m0\u001B[39m]\n", - "File \u001B[0;32m~/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/utils/_param_validation.py:186\u001B[0m, in \u001B[0;36mvalidate_params..decorator..wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 184\u001B[0m global_skip_validation \u001B[38;5;241m=\u001B[39m get_config()[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mskip_parameter_validation\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n\u001B[1;32m 185\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m global_skip_validation:\n\u001B[0;32m--> 186\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 188\u001B[0m func_sig \u001B[38;5;241m=\u001B[39m signature(func)\n\u001B[1;32m 190\u001B[0m \u001B[38;5;66;03m# Map *args/**kwargs to the function signature\u001B[39;00m\n", - "File \u001B[0;32m~/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/sklearn/linear_model/_coordinate_descent.py:678\u001B[0m, in \u001B[0;36menet_path\u001B[0;34m(X, y, l1_ratio, eps, n_alphas, alphas, precompute, Xy, copy_X, coef_init, verbose, return_n_iter, positive, check_input, **params)\u001B[0m\n\u001B[1;32m 664\u001B[0m model \u001B[38;5;241m=\u001B[39m cd_fast\u001B[38;5;241m.\u001B[39menet_coordinate_descent_gram(\n\u001B[1;32m 665\u001B[0m coef_,\n\u001B[1;32m 666\u001B[0m l1_reg,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 675\u001B[0m positive,\n\u001B[1;32m 676\u001B[0m )\n\u001B[1;32m 677\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m precompute \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mFalse\u001B[39;00m:\n\u001B[0;32m--> 678\u001B[0m model \u001B[38;5;241m=\u001B[39m \u001B[43mcd_fast\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43menet_coordinate_descent\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 679\u001B[0m \u001B[43m \u001B[49m\u001B[43mcoef_\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43ml1_reg\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43ml2_reg\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43my\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmax_iter\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mtol\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrng\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrandom\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mpositive\u001B[49m\n\u001B[1;32m 680\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 681\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 682\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\n\u001B[1;32m 683\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mPrecompute should be one of True, False, \u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mauto\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m or array-like. Got \u001B[39m\u001B[38;5;132;01m%r\u001B[39;00m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 684\u001B[0m \u001B[38;5;241m%\u001B[39m precompute\n\u001B[1;32m 685\u001B[0m )\n", - "File \u001B[0;32msklearn/linear_model/_cd_fast.pyx:265\u001B[0m, in \u001B[0;36msklearn.linear_model._cd_fast.enet_coordinate_descent\u001B[0;34m()\u001B[0m\n", - "File \u001B[0;32m~/Desktop/repos/overlappogram/venv/lib/python3.9/site-packages/numpy/core/getlimits.py:485\u001B[0m, in \u001B[0;36mfinfo.__new__\u001B[0;34m(cls, dtype)\u001B[0m\n\u001B[1;32m 484\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m__new__\u001B[39m(\u001B[38;5;28mcls\u001B[39m, dtype):\n\u001B[0;32m--> 485\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 486\u001B[0m obj \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mcls\u001B[39m\u001B[38;5;241m.\u001B[39m_finfo_cache\u001B[38;5;241m.\u001B[39mget(dtype) \u001B[38;5;66;03m# most common path\u001B[39;00m\n\u001B[1;32m 487\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m obj \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n", - "\u001B[0;31mKeyboardInterrupt\u001B[0m: " - ] - } - ], - "source": [ - "enet.fit(X[425].reshape(1, -1), y.transpose()[425].reshape(1, -1))" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T18:01:16.257981Z", - "start_time": "2024-02-19T17:59:24.678521Z" - } - }, - "id": "746bd56fb7eac2e0", - "execution_count": 83 - }, - { - "cell_type": "code", - "outputs": [], - "source": [ - "a = \"output/eccco_is_lw_forwardmodel_thermal_response_psf4pix_el_model_predicted_data_x2_1.0_5_wpsf.fits\"" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T18:08:29.079791Z", - "start_time": "2024-02-19T18:08:29.074958Z" - } - }, - "id": "783ecd0870e38c70", - "execution_count": 100 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "[]" - }, - "execution_count": 101, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEgUlEQVR4nO3deXxU9b0//tfsM1lmsm8k7AgiixUxxgWpIIi9Vivttcq3Yq/Vi0W/Vdqq3FvX235D7a+t1SLtvbVQe0VarUhrBUSQ4AIokchqhAASIBshyUxmMvvn98fMOcnAJJlJZs4kM6/n4zEPk5nDmU8OmLzy/rw/n6MSQggQERERKUSd6AEQERFRamH4ICIiIkUxfBAREZGiGD6IiIhIUQwfREREpCiGDyIiIlIUwwcREREpiuGDiIiIFKVN9ADO5/f7cebMGWRmZkKlUiV6OERERBQBIQRsNhtKSkqgVvdd2xhy4ePMmTMoKytL9DCIiIhoAOrr61FaWtrnMUMufGRmZgIIDN5sNid4NERERBQJq9WKsrIy+ed4X4Zc+JCmWsxmM8MHERHRMBNJywQbTomIiEhRDB9ERESkKIYPIiIiUhTDBxERESmK4YOIiIgUxfBBREREimL4ICIiIkUxfBAREZGiGD6IiIhIUQwfREREpCiGDyIiIlIUwwcREREpiuGDiIhS2qk2B1Ztr0NHlyfRQ0kZQ+6utkREREq683924+Q5B75osuHXt1+a6OGkBFY+iIgopZ085wAAvHu4KcEjSR0MH0RERACESPQIUgfDBxEREQCTXpPoIaQMhg8iIiIAmQa2QSqF4YOIiAhAhpHhQykMH0RElLLcXr/8cRqnXRTD8EFERCmr0+WVP07Ts/KhFIYPIiJKWZ1Ob/8HUcwxfBARUcrqWfnw+rnWVikMH0RElLLs7u7w4Wf4UAzDBxERpazQyoe/jyMplhg+iIgoZfXs+WD2UA7DBxERpSw7Kx8JEVX4WLVqFaZNmwaz2Qyz2YyKigps3LhRfn327NlQqVQhjyVLlsR80ERERLHQc9rFx5YPxUS1qLm0tBQrVqzAhAkTIITAn/70J9xyyy3Yu3cvLrnkEgDAvffei2eeeUb+M2lpabEdMRERUYzYXT75Yx8rH4qJKnzcfPPNIZ//7Gc/w6pVq7Br1y45fKSlpaGoqCh2IyQiIoqTTpdH/tjH7KGYAfd8+Hw+rFu3Dna7HRUVFfLzr7zyCvLy8jBlyhQsX74cDocjJgMlIiKKtU5WPhIi6r1k9+/fj4qKCjidTmRkZGD9+vWYPHkyAODOO+/EqFGjUFJSgn379uHRRx9FbW0t3njjjV7P53K54HK55M+tVusAvgwiIqLo9Ww49XGfD8VEHT4mTpyImpoadHR04PXXX8fixYtRVVWFyZMn47777pOPmzp1KoqLizFnzhzU1dVh3LhxYc9XWVmJp59+euBfARER0QAxfCRG1NMuer0e48ePx4wZM1BZWYnp06fjN7/5Tdhjy8vLAQBHjx7t9XzLly9HR0eH/Kivr492SERERAMSutqF4UMpg76Fn9/vD5k26ammpgYAUFxc3OufNxgMMBgMgx0GERFR1ELCB9faKiaq8LF8+XIsWLAAI0eOhM1mw9q1a7F9+3Zs3rwZdXV1WLt2LW666Sbk5uZi3759ePjhhzFr1ixMmzYtXuMnIiIaMDsrHwkRVfhobm7GXXfdhYaGBlgsFkybNg2bN2/GDTfcgPr6erz77rt47rnnYLfbUVZWhoULF+InP/lJvMZOREQ0KF2enqtdGD6UElX4eOmll3p9raysDFVVVYMeEBERkVK63AwficB7uxARUcpyerv39vAyfCiG4YOIiFKSzy/g7hE+/AwfimH4ICKilOTs0e8BsPKhJIYPIiJKSV3nhQ8/V7sohuGDiIhSUs9mU4CVDyUxfBARUUo6f9pFCPZ9KIXhg4iIUpI07ZJh6N51ghuNKYPhg4iIUpI07ZJu0MjPca8PZTB8EBFRSgpb+WD4UATDBxERpSQnp10ShuGDiIhSklz5MPYIH7yzrSIYPoiIKCV1uQO7m6bpWflQGsMHERGlJKnykabXQKNWAWDPh1IYPoiIKCVJPR8mnQYaFcOHkhg+iIgoJUlLbY06Vj6UxvBBREQpSZp2YfhQHsMHERGlpK6e0y7B8MH7uyiD4YOIiFKSMzjtYtKr5fDBO9sqg+GDiIhSUrjKB6ddlMHwQUREKSmk54OrXRTF8EFERCmpS552YeVDaQwfRESUknru86EO/jTkDqfKYPggIqKU1LPnQxtMH6x8KIPhg4iIUpLc86HXIDjrwvChEIYPIiJKSdKN5XqudvEzfCiC4YOIiFJSSM+HtNqFPR+KYPggIqKUJIcPrnZRHMMHERGlHI/PL2+l3vPeLtzhVBkMH0RElHKkZlPgvGkXf6JGlFoYPoiIKOVI93XRqFXQaVScdlEYwwcREaWcnnt8qFQqeXt1Trsog+GDiIhSTvd9XQI/BuUdTln5UATDBxERpRzpvi4GrQYAuMOpwhg+iIgo5Tg9wQ3G9IHwoWbPh6IYPoiIKOU4vaHTLhppe3X2fCgiqvCxatUqTJs2DWazGWazGRUVFdi4caP8utPpxNKlS5Gbm4uMjAwsXLgQTU1NMR80ERHRYEirXYzBaRdur66sqMJHaWkpVqxYgerqauzZswfXX389brnlFhw8eBAA8PDDD+Mf//gHXnvtNVRVVeHMmTO47bbb4jJwIiKigZIqH/K0C7dXV5Q2moNvvvnmkM9/9rOfYdWqVdi1axdKS0vx0ksvYe3atbj++usBAKtXr8bFF1+MXbt24corr4zdqImIiAZB6vkwsPKREAPu+fD5fFi3bh3sdjsqKipQXV0Nj8eDuXPnysdMmjQJI0eOxM6dO3s9j8vlgtVqDXkQERHFk7TapXupLRtOlRR1+Ni/fz8yMjJgMBiwZMkSrF+/HpMnT0ZjYyP0ej2ysrJCji8sLERjY2Ov56usrITFYpEfZWVlUX8RRERE0ZCnXXTByoc87ZKwIaWUqMPHxIkTUVNTg927d+P+++/H4sWLcejQoQEPYPny5ejo6JAf9fX1Az4XERFRJKRpF6OO0y6JEFXPBwDo9XqMHz8eADBjxgx88skn+M1vfoPbb78dbrcb7e3tIdWPpqYmFBUV9Xo+g8EAg8EQ/ciJiIgGyHX+DqdsOFXUoPf58Pv9cLlcmDFjBnQ6HbZu3Sq/Vltbi5MnT6KiomKwb0NERBQz3durSzucsudDSVFVPpYvX44FCxZg5MiRsNlsWLt2LbZv347NmzfDYrHgnnvuwbJly5CTkwOz2YwHH3wQFRUVXOlCRERDivO88MGGU2VFFT6am5tx1113oaGhARaLBdOmTcPmzZtxww03AAB+/etfQ61WY+HChXC5XJg/fz5efPHFuAyciIhooC7s+Qg8z/ChjKjCx0svvdTn60ajEStXrsTKlSsHNSgiIqJ4Ov+uttJqFz97PhTBe7sQEVHKkaZdTJx2SQiGDyIiSjmu86dduNpFUQwfRESUci64qy33+VAUwwcREaWc7u3Vz592SdiQUgrDBxERpZzuykfotAsbTpXB8EFERClHXmqrZcNpIjB8EBFRynEGp11M+tAdTr0MH4pg+CAiopTDhtPEYvggIqKU4vMLeHyBkCFPu3CpraIYPoiIKKVIG4wBF26vzsqHMhg+iIgopXT1CB8GbeDHICsfymL4ICKilCJVPgxatbzKRcPVLopi+CAiopRy/h1tgR4Np6x8KILhg4iIUsr5N5UDeky7sPKhCIYPIiJKKVL4kJbZAj2nXRIypJTD8EFERCkl7LQLt1dXFMMHERGllO7Kx4U9H9zhVBkMH0RElFK6+ph24T4fymD4ICKilBKu8sEbyymL4YOIiFKK0xvo+TCF6fngJmPKYPggIqKUIt3RNrTnI/BfTrsog+GDiIhSSrilttxeXVkMH0RElFKcXml79TA7nLLyoQiGDyIiSild7mDPhz5MwykrH4pg+CAiopQiVT6M2jANp9zhVBEMH0RElFL62l6d0y7KYPggIqKU4vJcOO3SvcMpSx9KYPggIqKUIu9wGq7hlIUPRTB8EBFRSpGmXQzhltoyfSiC4YOIiFKKFD5MYW4sx/ChDIYPIiJKKV3Bng9jmO3V/VxqqwiGDyIiSimusDeWC/yXlQ9lMHwQEVFK6WvahZUPZTB8EBFRSpHuahuyzwcbThUVVfiorKzEzJkzkZmZiYKCAtx6662ora0NOWb27NlQqVQhjyVLlsR00ERERAPVFeautmo2nCoqqvBRVVWFpUuXYteuXdiyZQs8Hg/mzZsHu90ecty9996LhoYG+fHss8/GdNBEREQDIYTovrFcmMoHs4cytNEcvGnTppDP16xZg4KCAlRXV2PWrFny82lpaSgqKorNCImIiGLE7fNDausI1/PBHU6VMaiej46ODgBATk5OyPOvvPIK8vLyMGXKFCxfvhwOh6PXc7hcLlit1pAHERFRPDjd3eHCGK7hlNlDEVFVPnry+/146KGHcPXVV2PKlCny83feeSdGjRqFkpIS7Nu3D48++ihqa2vxxhtvhD1PZWUlnn766YEOg4iIKGLSlItGrYJOc+GN5Xxc7aKIAYePpUuX4sCBA/jggw9Cnr/vvvvkj6dOnYri4mLMmTMHdXV1GDdu3AXnWb58OZYtWyZ/brVaUVZWNtBhERER9Uq+o602tPDP7dWVNaDw8cADD+Ctt97Cjh07UFpa2uex5eXlAICjR4+GDR8GgwEGg2EgwyAiIoqKdFM5kz70x59U+QAAv1/Iq18oPqLq+RBC4IEHHsD69euxbds2jBkzpt8/U1NTAwAoLi4e0ACJiIhixRFcZpum14Q8L612ATj1ooSoKh9Lly7F2rVrsWHDBmRmZqKxsREAYLFYYDKZUFdXh7Vr1+Kmm25Cbm4u9u3bh4cffhizZs3CtGnT4vIFEBERRUra46PnShege3t1IDD1ct7LFGNRhY9Vq1YBCGwk1tPq1atx9913Q6/X491338Vzzz0Hu92OsrIyLFy4ED/5yU9iNmAiIqKBksPH+ZWPntMurHzEXVThQ/TzF1JWVoaqqqpBDYiIiCheHGHu6wJ0N5wCbDpVAu/tQkREKcPZW89HSMOpokNKSQwfRESUMhxuLwDA2EfDKXc5jT+GDyIiShldnkCwSLug4VQFKX9wtUv8MXwQEVHK6ApWPs5vOAV63FyOhY+4Y/ggIqKU0b3J2IXhQ80t1hXD8EFERCnD0cs+H0DPygfDR7wxfBARUcqQKh/nr3YBetxcjuEj7hg+iIgoZfS2wykAqNlwqhiGDyIiShm93VgO6K58cNol/hg+iIgoZfTZ88GGU8UwfBARUcpw9tHzIW2xzp6P+GP4ICKilCFVPoxhKh9aNpwqhuGDiIhSRlcv93YBeuzzwfARdwwfRESUMvraZExuOGXPR9wxfBARUcqQbizX1yZjPm6vHncMH0RElBL8fgFn8MZyfW6vzmmXuGP4ICKilOD0+uSP+9xendMuccfwQUREKUFqNgV62eGUlQ/FMHwQEVFKkJbZGrRqOWj0pAn+ROQmY/HH8EFERCmhrw3GAN7VVkkMH0RElBL62lod4LSLkhg+iIgoJfS1xwfAHU6VxPBBREQpQWo47S18yPd2Yc9H3DF8EBFRSpAqH2k6bdjXNax8KIbhg4iIUoJ8U7neGk65vbpiGD6IiCgldFc++pl24fbqccfwQUREKaFLuq9Lf5UPTrvEHcMHERGlhC537/d1AdhwqiSGDyIiSgkOT+93tAV67HDKykfcMXwQEVFKcLgCPR/pbDhNOIYPIiJKCfZgz0e6IfxS2+6GU4aPeGP4ICKilCBVPtJ6CR/c4VQ5DB9ERJQS5MpHbw2nDB+KYfggIqKUYHcFwkeavpcdTrnaRTEMH0RElBKkHU7TDdznI9GiCh+VlZWYOXMmMjMzUVBQgFtvvRW1tbUhxzidTixduhS5ubnIyMjAwoUL0dTUFNNBExERRavfhlM1dzhVSlTho6qqCkuXLsWuXbuwZcsWeDwezJs3D3a7XT7m4Ycfxj/+8Q+89tprqKqqwpkzZ3DbbbfFfOBERETR6F5qy2mXRAv/N9CLTZs2hXy+Zs0aFBQUoLq6GrNmzUJHRwdeeuklrF27Ftdffz0AYPXq1bj44ouxa9cuXHnllbEbORERURSkykcat1dPuEH1fHR0dAAAcnJyAADV1dXweDyYO3eufMykSZMwcuRI7Ny5M+w5XC4XrFZryIOIiCiWfH4Bpycwn9LvPh+sfMTdgMOH3+/HQw89hKuvvhpTpkwBADQ2NkKv1yMrKyvk2MLCQjQ2NoY9T2VlJSwWi/woKysb6JCIiIjCkqoeQF+Vj8B/WfmIvwGHj6VLl+LAgQNYt27doAawfPlydHR0yI/6+vpBnY+IiOh8Ur+HRq2CQRv+Rx/3+VBOVD0fkgceeABvvfUWduzYgdLSUvn5oqIiuN1utLe3h1Q/mpqaUFRUFPZcBoMBBoNhIMMgIiKKSM8NxlTB6ZXzSTucehk+4i6qyocQAg888ADWr1+Pbdu2YcyYMSGvz5gxAzqdDlu3bpWfq62txcmTJ1FRURGbERMREUVJXunSS78H0L3ahTeWi7+oKh9Lly7F2rVrsWHDBmRmZsp9HBaLBSaTCRaLBffccw+WLVuGnJwcmM1mPPjgg6ioqOBKFyIiSpj+VroAnHZRUlThY9WqVQCA2bNnhzy/evVq3H333QCAX//611Cr1Vi4cCFcLhfmz5+PF198MSaDJSIiGghpa3VWPoaGqMKHiOAvxGg0YuXKlVi5cuWAB0VERBRL9uDW6qx8DA28twsRESU9h1T56GV3U6B7kzFurx5/DB9ERJT07G42nA4lDB9ERJT05MpHL3e0BTjtoiSGDyIiSnrdPR99VT4C/+X26vHH8EFERElPXu3SR8Op3PPhY/iIN4YPIiJKevI+H330fGiDN3fhDqfxx/BBRERJT97htI/KR/f26lzuEm8MH0RElPTke7v0UfnQB2845+Fa27hj+CAioqQn9Xz0tcmYVi2FD067xBvDBxERJT17cNol06jr9RhdcLkLKx/xx/BBRERJz+b0AAAy+ph20UkNp6x8xB3DBxERJT1bcNolw9h/+GDlI/4YPoiIKKkJIdAZDB+ZfS615bSLUhg+iIgoqTncPkiblkZW+eC0S7wxfBARUVKTqh4atQomXe+rXaSGUy8rH3HH8EFEREnN5gz2exi0UAXvXBuOVPlws/IRdwwfRESU1KTKR18rXYAelQ/ucBp3DB9ERJTUOoOVj8w++j2AHj0fXoaPeGP4ICKipNbp6n+PD6BH+OCN5eKO4YOIiJKa1dn/Hh8Al9oqieGDiIiSWqczsp4PfbDyIQTgY/Ujrhg+iIgoqckbjPVxXxcA0Gq6fySy+hFfDB9ERJTUusNHZKtdAIaPeGP4ICKipGaLcNpFp+5Z+eC0SzwxfBARUVKLdJ8PtVoFjZq7nCqB4YOIiJJapzO41LafaRcA0AbDh5vhI64YPoiIKKlFckdbibTixctpl7hi+CAioqRmi3CfD4B7fSiF4YOIiJJapD0fQI9dTln5iCuGDyIiSmo2Z2T7fAA9wwcrH/HE8EFERElLCBFl5YN3tlUCwwcRESUth9snb5VuNkXS8xH4sejinW3jiuGDiIiSVkdXYJmtTqOCSafp93iDNvBj0c3wEVcMH0RElLSk8GEx6aBSqfo5ujt8sPIRX1GHjx07duDmm29GSUkJVCoV3nzzzZDX7777bqhUqpDHjTfeGKvxEhERRcwaDB9mU//NpgBgDFZHnB5f3MZEAwgfdrsd06dPx8qVK3s95sYbb0RDQ4P8ePXVVwc1SCIiooGQKh/mCFa6ANFVPtodbrmfhKLTf/fNeRYsWIAFCxb0eYzBYEBRUdGAB0VERBQLPaddIiFVPlz9VD6+aLLhxud2YMGUYqxcdNngBpmC4tLzsX37dhQUFGDixIm4//770dra2uuxLpcLVqs15EFERBQL0YaPSCsfWw83wy+Af+5vgJ/Vj6jFPHzceOONePnll7F161b8/Oc/R1VVFRYsWACfL3yKrKyshMVikR9lZWWxHhIREaUoa3CDscjDR7Dy0U/46HJ75Y/P2l0DHF3qinrapT/f/va35Y+nTp2KadOmYdy4cdi+fTvmzJlzwfHLly/HsmXL5M+tVisDCBERxYQ16mmXwO/k/TWcttrd8scN7U4UZBoHOMLUFPeltmPHjkVeXh6OHj0a9nWDwQCz2RzyICIiigW54TSCDcYAwKCLrPLRbOuudpzrEUQoMnEPH6dOnUJrayuKi4vj/VZEREQhom441UZW+Wi2OuWPrU7PAEeXuqKeduns7AypYhw/fhw1NTXIyclBTk4Onn76aSxcuBBFRUWoq6vDI488gvHjx2P+/PkxHTgREVF/op12kSsfnsgrH1JfCUUu6vCxZ88efPWrX5U/l/o1Fi9ejFWrVmHfvn3405/+hPb2dpSUlGDevHn4r//6LxgMhtiNmoiIKAIdUW4y1r3apffKh98v0NIjfNhY+Yha1OFj9uzZEKL3ZUWbN28e1ICIiIhiJeqltvIOp71XPs453PD2WF5rY+Ujary3CxERJa2B73Dae+Wj2Rq6tJaVj+gxfBARUVJyenzyqhVLWrT3dum98tFkc4Z8bu1i5SNaDB9ERJSUpKqHRq1Chj7CpbYRVD5aWPkYNIYPIiJKSq2dgf03stP0UKtVEf0Zg7zUto/KR3CZbaYxEGg6Xax8RIvhg4iIklKbIxA+ctIjm3IBetxYrq+ej+BKl9G56QCArn72BKELMXwQEVFSkrZAz0nXR/xnIrmxnLTMdmROGgCgy83wES2GDyIiSkptAwgfkTScStupl2ab+j2WwmP4ICKipDSQykeaPhA+et619sLzBiofI4Lhg9Mu0WP4ICKipHQuGBJy0qIJH4EmUofHB78//IaaredVPjjtEj2GDyIiSkpt9sAS2IFUPoQAnGGaTr0+P9odgfOOyAr2fHh8fe78TRdi+CAioqQkTY9kRxE+TMGeDwBwhKlotAWDh0oFFGcZ5ef7alClCzF8EBFRUpIaQ3PTI7+xqVqtkqsfDteF4UMONGl6pPfYuIxTL9Fh+CAioqQkbTIWzbQL0D31Yg/TdCpN5WSl6aBRq6APLs11sOk0KgwfRESUdJwen9wYWmwx9nN0KLnpNEw1o93RvWsq0D1Nw8pHdBg+iIgo6UhboBt1amRFeFM5iTztEqby0R68X0x28JwmeV8Qho9oMHwQEVHSaegIhI9iiwkqVWT3dZHI0y5hej6kLdstpmDlQ9oXhOEjKgwfRESUdBo6ugBEP+UCAOkGadolTOXDEVr5MHLaZUAYPoiIKOlIlY+iAYSP7mmX3ns+suRpF3Wvx1LvGD6IiCjpNLQHwkeJxRT1n03X9175kPb5yEoLnXbp6y64dCGGDyIiSjqDqXyY+uj56JCnXQLhw6hlw+lAMHwQEVHSkXo+SrIG3vMRrom07bxpF/Z8DAzDBxERJZ1GqfJhjn7apXu1S+9LbaXwYQj2fDi5vXpUGD6IiCip9NxgbCCVj94aTv1+gTZ76CZjRu7zMSAMH0RElFR6bjBmMUW3wRjQvcPp+ZWP9i4PvP7A3WvzMgL3i+neZIyVj2gwfBARUVIZzAZjAJBuCL9xWItNuqmcTr6ni1GadmHlIyoMH0RElFQGs8EYAJh04SsfUvjIz+y+Sy5XuwwMwwcRESWVwSyzBborH+cvtW3pDJw3JHyw52NAGD6IiCipDGaDMQDICC617Tyv8nHWFmg2zc/oET707PkYCIYPIiJKKoOtfGQaw4eP0+2B6ZxCc/d5jVppqS0rH9Fg+CAioqQirXYpMg8sfGQYAitkOl1eCCHk54+dtQMAxuany89xk7GBYfggIqKk0mgdXOUjI1j58PlFyHRKXXMnAGBcfob8nNzzwU3GosLwQUREScPj8+NsZ2BVSuEAKx9pOg2kFbo2V2BHU4fbK0+79Awf0j4fLjacRoXhg4iIkkaLzQUhAJ1Ghdx0/YDOoVarkBHcaKzTGej7ONYSmHLJSdcju8d5uc/HwDB8EBFR0pCmXAoyjVCro99gTCJNvUjLbetapCmX9JDj5J4Pho+oRB0+duzYgZtvvhklJSVQqVR48803Q14XQuCJJ55AcXExTCYT5s6diyNHjsRqvERERL1qDoaPQrOhnyP7Ji23laZd6oKVj55TLkDPygd7PqIRdfiw2+2YPn06Vq5cGfb1Z599Fs8//zx+97vfYffu3UhPT8f8+fPhdDoHPVgiIqK+NA5yma1EqnxI0y7dlY/zwwc3GRsIbbR/YMGCBViwYEHY14QQeO655/CTn/wEt9xyCwDg5ZdfRmFhId588018+9vfHtxoiYiI+tAc3AK9IHOQ4eO8jcaklS5je5l2cXn98PvFoKZ6UklMez6OHz+OxsZGzJ07V37OYrGgvLwcO3fujOVbERERXaDNEZgmkW55P1A9NxoTQuDLVgcAYExe+PABBAIIRSbqykdfGhsbAQCFhYUhzxcWFsqvnc/lcsHlcsmfW63WWA6JiIhSSEdXYAv0rDTdoM4j93w4vWixudDl8UGtAkqz00KOk3Y4BQJTLya9BtS/hK92qayshMVikR9lZWWJHhIREQ1T7cHKx+DDR/cupyeCVY+SLBP02tAfm1qNGtrgVAu3WI9cTMNHUVERAKCpqSnk+aamJvm18y1fvhwdHR3yo76+PpZDIiKiFNIdPgY37dKz4fTL1sBKl9G56WGPNel4c7loxTR8jBkzBkVFRdi6dav8nNVqxe7du1FRURH2zxgMBpjN5pAHERHRQHR0BcOHaXCVj8weDadSv8eo3LSwxxp4f5eoRd3z0dnZiaNHj8qfHz9+HDU1NcjJycHIkSPx0EMP4ac//SkmTJiAMWPG4PHHH0dJSQluvfXWWI6biIjoAm2OGPV8GLt7Pk4EKx+9hQ95rw9Ou0Qs6vCxZ88efPWrX5U/X7ZsGQBg8eLFWLNmDR555BHY7Xbcd999aG9vxzXXXINNmzbBaBzcsiciIqK+uLw+OILVhyzTIKdd5MqHB03WwDlH9TLtkqZn5SNaUYeP2bNnh9xi+HwqlQrPPPMMnnnmmUENjIiIKBrSlItK1b1UdqCkyoe1y4v6c4Fpl956PtIN0lbs3kG9ZyqJ6VJbIiKiROkINptaTLpBb/Yl7RNS22SDzy+gUaswOi/8tEt68CZ0djfDR6QSvtSWiIgoFtq7YrPBGADkBM/h8wcq/aNy02DQht/DI90QeF66CR31j+GDiIiSQnuPysdgZaWHnmNCQUYvR/aofHDaJWIMH0RElBRitdIFCCy11faYuplQkNnrsWlS5YMNpxFj+CAioqQg9XwMdo8PILB4Iju9e/pmQmEflY9gw6mDlY+IMXwQEVFSaJfv6zL4ng8AKM02yR9fXNz7BphsOI0ewwcRESWFWPZ8AMCYHktrx+X3XvmQ9vlgw2nkGD6IiCgpdK92iU34WHzVaGQYtPj+7HHQ9LF0N4P7fESN+3wQEVFS6IjRTeUk08uysP+peVCp+t4zJM3AaZdosfJBRERJQVrtYolR5QNAv8EDADKCq10cXO0SMYYPIiJKCu0xXO0SjTR99x1wKTIMH0RElBSke7vEatolUtJqFwcbTiPG8EFERMOex+eXKw9KVz66t1dn5SNSDB9ERDTs9byjrVnh8CHdAbfT7YXf3/td36kbwwcREQ17Ur+H2ajrc1lsPEj7iggB2JysfkSC4YOIiIa99hje1yVaBq0GJl1g6kWqwFDfGD6IiGjYS9RKF4lU/ZC2eKe+MXwQEdGwJ+1ualF4pYtEqriw8hEZhg8iIhr25GmXBFU+pCZXqQJDfWP4ICKiYa97j4/EhA8p9LDyERmGDyIiGvbaY3xfl2hx2iU6DB9ERDTstSV42kVuOHWw4TQSDB9ERDTsJXzaJVhxYc9HZBg+iIho2JN+6FsSVPnISQ+Ej1Y7Kx+RYPggIqJhT9pfI1E9H/kZBgDA2U5XQt5/uGH4ICKiYa+74TQxlY+8zGD4sDF8RILhg4iIhjWfX8j3VEnUtEteRqDicrbTDSF4c7n+MHwQEdGwZu2xvDVx4SNQ+XD7/LB28eZy/WH4ICKiYU3aWj3DoIVOk5gfa0adBplGLQCghX0f/WL4ICKiYU1aZpuoqoeETaeRY/ggIqJhTdrYK9HhQ2o6bWHTab8YPoiIaFhL9AZjkiKzEQDQ2OFM6DiGA4YPIiIa1hK9zFYyItsEADjd3pXQcQwHDB9ERDSsDZWej5Isho9IMXwQEdGw1r21emJ2N5WMyApMu5xuY/joT8zDx1NPPQWVShXymDRpUqzfhoiICEDPrdUTPO2SlQYAONPB8NEfbTxOeskll+Ddd9/tfhNtXN6GiIhI3mQsK+HTLoHKR7vDA7vLi3QDf/b1Ji5XRqvVoqioKB6nJiIiCpHoO9pKMo06mI1aWJ1enGnvwoTCzISOZyiLS8/HkSNHUFJSgrFjx2LRokU4efJkr8e6XC5YrdaQBxERUaSkHU4tCZ52AbqbTk+x6bRPMQ8f5eXlWLNmDTZt2oRVq1bh+PHjuPbaa2Gz2cIeX1lZCYvFIj/KyspiPSQiIkpi8lLbBDecAkBpdqDvg02nfYt5+FiwYAG+9a1vYdq0aZg/fz7efvtttLe3469//WvY45cvX46Ojg75UV9fH+shERFRkhJCyD0fQ6HyURrc6+MUw0ef4t4Nk5WVhYsuughHjx4N+7rBYIDBYIj3MIiIKAl1eXxw+/wAEt9wCnSHD+710be47/PR2dmJuro6FBcXx/utiIgoxUhTLjqNCml6TYJHA4yQej7aHAkeydAW8/Dxox/9CFVVVThx4gQ++ugjfOMb34BGo8Edd9wR67ciIqIU13ODMZVKleDRsOcjUjGfdjl16hTuuOMOtLa2Ij8/H9dccw127dqF/Pz8WL8VERGluO6t1YfGnhrS/V2abS44PT4YdYmvxgxFMf/bWrduXaxPSUREFFabQ9rdNPErXQAgO00Hk06DLo8PDR1OjMlLT/SQhiTe24WIiIatVnsgfOSmD43woVKpeqx4Yd9Hbxg+iIho2DrXGQwfGUMjfADAyJxA38eJVoaP3jB8EBHRsHXO7gIA5AyRygcAjC/IAADUNXcmeCRDF8MHERENW9K0S0760NkvalwwfBxl+OgVwwcREQ1brcFpl7whNO0iVT6ONIe/rQgxfBAR0TB2Tq58DL3w0WR1wer0JHg0QxPDBxERDVutQzB8mI06FGQGpoHY9xEewwcREQ1Lfr+Q9/nIHUI9H0DPqReGj3AYPoiIaFiyOj3w+QWAoVX5AIDJxWYAwMHTHQkeydDE8EFERMNSiy2wzNZs1EKvHVo/zqaWWgAA+xg+whpaf1tEREQRarQ6AQBFFmOCR3KhaaVZAIBDZ6zw+PyJHcwQxPBBRETDUmNHIHwUmode+BiVk4ZMoxYurx9fNHHJ7fkYPoiIaFhqkiofQzB8qNUqTJOmXk5x6uV8DB9ERDQsDeVpFwC4tCwLALDnRFtiBzIEMXwQEdGw1NgRaDgtGIKVDwC4YkwuAGD38dYEj2ToYfggIqJhqaGjCwBQPETDx4xR2dCoVTjV1oXT7V2JHs6QwvBBRETDjhACJ4O3rB+Zm5bg0YSXYdBiSklgv4+PWf0IwfBBRETDTrvDA5vLCwAoyx6a4QMAyscGp16OnUvwSIYWhg8iIhp2Tp4LVD0KMg0w6TUJHk3vKsYFwkfVFy0QQiR4NEMHwwcREQ07XwbDx6ghOuUiqRibC5NOg4YOJw6esSZ6OEMGwwcREQ07J1vtAICynKEdPow6Da6ZkAcA2Hq4OcGjGToYPoiIaNj5vDGwa6h099ihbO7FBQCALYcbEzySoYPhg4iIhp1DwSmMS0osCR5J/+ZeXAiNWoUDp62oa+lM9HCGBIYPGhJe2HoE33+lGh1dnkQPhYiGOLvLi+PBaRfp1vVDWW6GAbOCUy8b9p5O8GiGBoYPSrjP6tvxyy1f4O39jfjzzhOJHg4RDXGfN1ohRGClS36mIdHDicitXxkBAPjbp6fh83PVC8MHJdx/7zgmf8xucCLqT/eUy9CvekjmTS5CVpoOp9u78M5B9n4wfFBCnW7vwqYe/yPWNqburacbO5xY+sqn+PmmzxM9FKIh7eAw6veQmPQafOfKUQCA3+84lvJ7fjB8UEKt2Pg5fH6BCcGO9eOtdnS5fQkelfL8foF///Me/HN/A1Ztr8PBM7wFN1FvaurbAQyvygcA3FUxGnqNGjX17diV4jueMnxQwnS6vNj+eWDd+/+dMwF5GXoIgZT8wbt+72l8dqr7637nYFMCR0M0dJ2zu+VltjPH5CR4NNHJzzTgX2eWAgB++s9DKd37wfBBCfP81iOwubzQaVS4aWoxLh8V+Eay+3hq/UZgc3rw/71TCwAYGdwwacshhg+icD48ehYAMKEgA3kZw6PZtKeH516ETKMWB89Y8b+7vkz0cBKG4YMSYnttM/7n/UCj6apFM6BRq1A+NhA+dh0Lvftjk9WJZptT8TEqwe3149G/7UNDhxNlOSa8et+VUKuAQw1W1Ae3jyaibm/tOwMAmDu5MMEjGZjcDAMemT8RAPDzTZ+n7P/nDB9JwO8XcHv9iR5GRIQQeGX3l1jyv9UQAvj2zDL5m8h1F+UDCPxmI/0PuX7vKVy9Yhuue3Y7DpxOrumYji4P7l79Md7e3wiNWoVffHM6RmSZMHN0IIS906P64fMLHDpjHTZ/z3354MhZfPu/d2IzO/4pSufsbrxX2wIA+Pr0kgSPZuAWlY/CFaNz4HD78PiGAynZfMrwMcxt3N+Aq1Zsw1UrtsUlQcfyfwohBJ7YcBD/uf4AnB4/Zl2Uj2dumSK/PjY/A9eMz4NfBJbfPrvpcyz762fw+gW6PD48+feD8CfJHOmpNge+9buP8FFdK9L1Gvzx7pm4Mnjr7XmXFAEANh1oAAC0O9y443924abn38fNL3wwZDZiO9vpwpMbDuC+l/fgnN0d0Z/54MhZ/J+XdmPXsXN49G/7kiJMkXL+d9eXcHv9mDLCjElFmYkezoCp1SpULpwKvUaN7bUt2Hgg9YI4w8cw5fMLrNj4Oe5/5VM0Wp042+nCyveOxuz8p9oceGDtp5j4+Cb8+5/3wOMb/A+J3247ij/v+hIqFfDYgkl4afHl0GtD/wl+79oxAIA/7/oSL26vgxDA/EsKYdSpUf1lG17ZfeEcqcvrG7KNW1anBxtqTodMGx06Y8U3XvwIXzR1oshsxGtLrpKrPgBw45QiaNQqfHKiDQ+t24u5v6rCx8E+mNomG1ZsPKz419GTEALvHGzE155/H3/a+SXeOdSE31fV9fvnaurbcd+f98iftzs88vw9UX86ujxY89EJAMC9146FSqVK7IAGaVx+BpbMHgcAeOrvB4fMLxVK0cbrxCtXrsQvfvELNDY2Yvr06XjhhRdwxRVXxOvtUkptow2PvbEPe0+2AwBmjMpG9ZdteK36FL5+aQkqxubis1MdWPfxSXx8/BwqxuXi8X+ZDKNO0++5T7U5sGp7HV7bcwruYODYfLAJa3efxOKrRocc6/L6YND2f04gMJXyq3e/AAD87NapuLN8ZNjjrrsoH9+cUYrXq08hN12Pn31jCm6cUow/vH8MP/3nYTy+4SA+OdGGsfnpONxgRfWXbTjb6UaR2Yg1/zYTk4oGvvTO6fHh9epTePdwE7RqNf7fbVNQkGkc0LmEEHj143pUvn0YNpcXEwoy8M//ey1OnnNg0R92oc3hwaSiTKz+7kwUW0whf3ZElgn3XjsWv6uqw5s1gfnt0blpuOeaMXh8w0G8+nE9ynLScP914+L2Dfh0exf+8kk9MgwaXDUuD7uOteJIUyemllrw/pEWbD5vNc5r1afw8A0Xyf/GvD4/3j3cDJvTg9LsNHx49Cz++OFxONw+XDM+L9Df8nE93trXgK9OKojL10DJ5Zfv1OKc3Y1x+em4aWpxoocTE9+fPQ5v7TuDYy12rNh4GJW3TUv0kBSjEnGYbPrLX/6Cu+66C7/73e9QXl6O5557Dq+99hpqa2tRUND3Nxqr1QqLxYKOjg6YzcNrDTcQ+KHj9QvoNLEtKvn9AjuPteJvn57CPz47A49PIMOgxf+7bSq+Pr0ED63bizdrzkCtArLS9BeUwedNLsQLd34lbFg42+nCrmOt2Hq4Gf/47Ay8wSrCVeNyUWQ24o29p6HTqPD92eMxJi8dn51qx44vWlDXYse1E/Lw2zsvg8Wk63Xsx8/a8c1VH6HV7sbtl5fh59/s/3+wZpsTFpNOHq/PL/DMPw7iTzt77w6fVmrBa0sqIg5EAODx+fHJiXN491Az3qw5HXLd8jL0+O7VY3DHFSORk66H0+NDu8ODnHT9BRUbIPB332R1Ye/JNvz3+8fkcCi5dkIePm+0ocXmwvRSC16+p7zX6+bzC/zxg+PYfbwV108qxLcuL4VOo8av3qnF89sCFa4RWSaMyk2DxaRDVpoOOel6XDEmF1eNyx3Qv792hxubDzbirX0N+Kiutc9qklatwn2zxuL+2eMw/9c7cKbDiTmTCvDkzZfgRKsdv3ynNmTpsKR8TA5eunsmDp7uwO3/vQsmnQYbf3At8jMN2HuyHe8ebkKbw41bLx3BUEKyD48GpuuEANZ+rxxXjc9L9JBi5uPj5/Cvv98JAHj13itRMS43wSMauGh+fsclfJSXl2PmzJn47W9/CwDw+/0oKyvDgw8+iMcee6zPPzscwoffL9Bkc6Khw4n6cw7UtdhxrKUTx1rsOH7WDp8QuPOKkbjtshHyb7UtNhda7S5kGnUYl5+OTGPvP6x7cnp8eHt/A3773lEca7HLz98wuRDP3HKJfH6nx4cfrNsr/0Zq0KrxtanFGF+Ygee2HIHb58fY/HTMmpCPnPRAOGno6MKxFjuONIfeZfHq8bl48PoJuHJsLvx+gQde/RRv7+99TnJ8QQYWlY/ExcVm5GUY0Onyos3uxpFmGz5vsGHLoSbYXF5cUmLG3+6/KqIKTG+qvzyHzQeb0OHwYHxBBr4yMgtmkw63vfgROl1eTC+1YN4lRXC4vWixudBic0GnUeO2y0ZgyggLMgxanGrrwt6TbfiorhXvHzmLTpdXPn9ptgnzJhfhnUONONXWBQDQqFUwG7Xo6PLAL4A0vQazJ+ZjbF4G0g1a2F1eHDjTgQOnrTjb6ZLPZdSp8aN5E5GXYcBDf6mRn59UlIlXvleO3AEuE1z94XH88p0vQsbdU066HtddlI/sND0yjVpkGrXQadTQadTQa9UwG7XISddDrVah/pwDnzfaUHOyHZ+cOCcHTwC4qDADDR1OuDx+lI/NQbHFiJPnHBiVk47/c+UoTC0N7C757qEm/Pv/Vl8QVjKNWlxUmIlmmxOjc9NxxxUjMW9yIbQaNXx+gXm/rkJd8N+0SgWc/51o6ggLLirMhM/vh8vrR2m2CXMuLsTM0TnQqAMVHyEEXN7A65kGLdTq+JfivT4/zrQ7Ud/mwKk2B7rcPkwqNsPvF2jpdKGxw4kTrXY0W11wuH2YWmrBtFILvD4Bj8+PdIMWGQYtMoxaZBq08IlAw7jL68eJs3Z8cuIcdh8/B6fHh298pRQP3zAhqkCdbBo7nPiXF97H2U43/vXyUjz7zemJHlLM/ef6/Xhl90mMzk3DpodmDep7ZCIlNHy43W6kpaXh9ddfx6233io/v3jxYrS3t2PDhg0hx7tcLrhc3d+wrVYrysrKYh4+WmyBngghBAQAvxDwi8A3LyG6P/cLAZz3uUDgOKfHj9NtXTh5zoEuz+B24SyxGFFgNsKgVcOo08CoU0Ov1cDvF/D6/fD6BM7a3TjSZIMjuONnpkGLf5lejG9dXobLRmaHPe/hBitaO924dGQWMgyBWbUdX7TgwVf39jmnOKkoExXjcnHLpSNwaVlWyGt+v8CGz07j1Y/rAQATCwPH5qTrsfSVT9EaQbPhjFHZWLXoMhSYBzaN0Z8Pj57FfS/vgX0Au6PmZehx3UUFWDClCLMn5kOrUcPt9eOf+8/gpQ+O48Dp7vvNqFVAX+0lahUwoSAT107Iw33XjZWnbd77vBkbDzRgXH4GvlMxCmn6wc14drq82FffjpZOFzq6PGh3eHC6rQvvHm6K6O+jNxcXm/Ev04px09RijMlLhxACPr+Atp9KyoHTHXjsjX04cNqK/EwDbphciB/MmYDCPv6+Gzq68KPXPsOHRwNLq/MzDZgzqQBunx9/rzkTEoR60qpVMJt08AsBh8snTw+qVUC6XgsE84cKgADg9QW+Bq/fj3S9FiVZJmQYtXB7/fJ7SJlFCMDt88Pu8qLT5YVeo0ZxlhFeX6Dp2eH2oc3u7nVs8aDTqGAx6aBRq6BWBR9qQK1SQaNSQaWC/JpKpYIm+JpKpYJGBfnPaDUq6DRqaNWB19TB1wQC3wMFpAAo5CDY83zq4HvI51QHzqFRS+8V+FyaChTy9070+h7hXhMIfCJ9362pb8eJVgcmFWVi/fevhkk/PH8w98Xm9OCGX+1Ao9WJWRflY1x+etzfMy/DgKVfHR/TcyY0fJw5cwYjRozARx99hIqKCvn5Rx55BFVVVdi9e3fI8U899RSefvrpC84T6/BR19KJOb+sitn5NGoVisxGjMgyYWx+euCRl4Gx+ek4ftaOv+6px866VlidXqhUQG66HjnperQ7PGi2ufp/gx6KLUZ8p2IU7qoYLQeKaHU4PHj3cBM+b7TC5vQiO12PYosRJRYTLhuVjZx0/YDO2+5w4/XqU9hxJLA89mynC2ajDmaTDqNz03BxsRlTR1hw7YS8fn+ADVZjhxN/+/QUPm+0ITtNh/wMA/IyDahr7sS2z5tR3+aAxyeQlabDlBILrhiTg+suysfUEZZef2MWQuDkOQecHj+y03XISzeg5lQ7Pj5+Dmfau+Bw+6DTqDC52IwpIyyYVGRO6DdHr8+PD+taceB0B2xOL2xODzpdXnh9Am5f4LfrQFhxw+cXKDQbMbEoE1NHBK7HuPyMQb2/0+ODQauOuBdFur5pem3I3UlPtTlQ/WUbTrV1waAN/MA8eMaKjQcae634KEmvVaMs24SynDRo1SocbrDBpNcgL0OPgkwjRuemochigkYNvPd5C87Z3dBpVdCq1XC4veh0+dDp8qDT6YVGrYI+WJUqMBtxaVkWrhqXC6vTi/966xBaovx+kYwKMg342/1XoSy4CV8yevdQE7738p7+D4yRsfnp2PbD2TE957AKH0pVPs7Z3fjD+8eCvwUgmPwDvzWE+1z6zUGF4OfqwDeOEdkm+ZtOJPPqfr+AX4T+5tjh8OBIsw1tDg9cXh+cHj+cHh/cXj+0GhU06sBvEVlpOozOS8dFBZmKlJOTnd8v4BOx78ch5fj8As02J2xOL1QA0g3d00rWLg/sbp/8G7dEp1bL/1/ZnB6cbneiyx0ISdL0jV8IOTDpNCpkGLRIN2jR5fah2eaEXqOBSR+oUman6VFkNio2xdNsC1S3fP7uKq1PCIhgddYX/B4jevlYquB6g/sBSf8f+IUILF2Xv88Fvv+pEJgGC1wXyMf5Q87Z/XmgOoYezwuo0H0u6fyBz0PfQ7rmYV8Lfq5Vq3DjlGIUWeJTNR1KNtScxhdNytxcMztNj+9dOzam54wmfMR8tUteXh40Gg2amkK74ZuamlBUVHTB8QaDAQZD/LfIzUnX45EbJ8X9fc6nVqugRug3KUuaDpePHl73JEgG4f4uaHjRqFUotphQHOZmppHMkxeajRhfEO3+EIm7c6pWo0ZJlgklWab+D6Zh75ZLRyR6CIqJ+a+Aer0eM2bMwNatW+Xn/H4/tm7dGlIJISIiotQUl30+li1bhsWLF+Pyyy/HFVdcgeeeew52ux3f/e534/F2RERENIzEJXzcfvvtaGlpwRNPPIHGxkZceuml2LRpEwoLh+eNgIiIiCh24rLPx2AMh30+iIiIKFQ0P7/Z9k9ERESKYvggIiIiRTF8EBERkaIYPoiIiEhRDB9ERESkKIYPIiIiUhTDBxERESmK4YOIiIgUxfBBREREiorL9uqDIW24arVaEzwSIiIiipT0czuSjdOHXPiw2WwAgLKysgSPhIiIiKJls9lgsVj6PGbI3dvF7/fjzJkzyMzMhEqlium5rVYrysrKUF9fz/vGDAKvY2zwOsYGr2Ns8DrGTqpeSyEEbDYbSkpKoFb33dUx5CofarUapaWlcX0Ps9mcUv8g4oXXMTZ4HWOD1zE2eB1jJxWvZX8VDwkbTomIiEhRDB9ERESkqJQKHwaDAU8++SQMBkOihzKs8TrGBq9jbPA6xgavY+zwWvZvyDWcEhERUXJLqcoHERERJR7DBxERESmK4YOIiIgUxfBBREREikqZ8LFy5UqMHj0aRqMR5eXl+PjjjxM9pITasWMHbr75ZpSUlEClUuHNN98MeV0IgSeeeALFxcUwmUyYO3cujhw5EnLMuXPnsGjRIpjNZmRlZeGee+5BZ2dnyDH79u3DtddeC6PRiLKyMjz77LPx/tIUVVlZiZkzZyIzMxMFBQW49dZbUVtbG3KM0+nE0qVLkZubi4yMDCxcuBBNTU0hx5w8eRJf+9rXkJaWhoKCAvz4xz+G1+sNOWb79u247LLLYDAYMH78eKxZsybeX55iVq1ahWnTpsmbMlVUVGDjxo3y67yGA7NixQqoVCo89NBD8nO8lv176qmnoFKpQh6TJk2SX+c1jAGRAtatWyf0er344x//KA4ePCjuvfdekZWVJZqamhI9tIR5++23xX/+53+KN954QwAQ69evD3l9xYoVwmKxiDfffFN89tln4utf/7oYM2aM6Orqko+58cYbxfTp08WuXbvE+++/L8aPHy/uuOMO+fWOjg5RWFgoFi1aJA4cOCBeffVVYTKZxO9//3ulvsy4mz9/vli9erU4cOCAqKmpETfddJMYOXKk6OzslI9ZsmSJKCsrE1u3bhV79uwRV155pbjqqqvk171er5gyZYqYO3eu2Lt3r3j77bdFXl6eWL58uXzMsWPHRFpamli2bJk4dOiQeOGFF4RGoxGbNm1S9OuNl7///e/in//8p/jiiy9EbW2t+I//+A+h0+nEgQMHhBC8hgPx8ccfi9GjR4tp06aJH/zgB/LzvJb9e/LJJ8Ull1wiGhoa5EdLS4v8Oq/h4KVE+LjiiivE0qVL5c99Pp8oKSkRlZWVCRzV0HF++PD7/aKoqEj84he/kJ9rb28XBoNBvPrqq0IIIQ4dOiQAiE8++UQ+ZuPGjUKlUonTp08LIYR48cUXRXZ2tnC5XPIxjz76qJg4cWKcv6LEaW5uFgBEVVWVECJw3XQ6nXjttdfkYw4fPiwAiJ07dwohAkFQrVaLxsZG+ZhVq1YJs9ksX7tHHnlEXHLJJSHvdfvtt4v58+fH+0tKmOzsbPGHP/yB13AAbDabmDBhgtiyZYu47rrr5PDBaxmZJ598UkyfPj3sa7yGsZH00y5utxvV1dWYO3eu/JxarcbcuXOxc+fOBI5s6Dp+/DgaGxtDrpnFYkF5ebl8zXbu3ImsrCxcfvnl8jFz586FWq3G7t275WNmzZoFvV4vHzN//nzU1taira1Noa9GWR0dHQCAnJwcAEB1dTU8Hk/ItZw0aRJGjhwZci2nTp2KwsJC+Zj58+fDarXi4MGD8jE9zyEdk4z/hn0+H9atWwe73Y6KigpewwFYunQpvva1r13w9fJaRu7IkSMoKSnB2LFjsWjRIpw8eRIAr2GsJH34OHv2LHw+X8g/AgAoLCxEY2NjgkY1tEnXpa9r1tjYiIKCgpDXtVotcnJyQo4Jd46e75FM/H4/HnroIVx99dWYMmUKgMDXqdfrkZWVFXLs+deyv+vU2zFWqxVdXV3x+HIUt3//fmRkZMBgMGDJkiVYv349Jk+ezGsYpXXr1uHTTz9FZWXlBa/xWkamvLwca9aswaZNm7Bq1SocP34c1157LWw2G69hjAy5u9oSDVdLly7FgQMH8MEHHyR6KMPSxIkTUVNTg46ODrz++utYvHgxqqqqEj2sYaW+vh4/+MEPsGXLFhiNxkQPZ9hasGCB/PG0adNQXl6OUaNG4a9//StMJlMCR5Y8kr7ykZeXB41Gc0EnclNTE4qKihI0qqFNui59XbOioiI0NzeHvO71enHu3LmQY8Kdo+d7JIsHHngAb731Ft577z2UlpbKzxcVFcHtdqO9vT3k+POvZX/XqbdjzGZz0nwz1Ov1GD9+PGbMmIHKykpMnz4dv/nNb3gNo1BdXY3m5mZcdtll0Gq10Gq1qKqqwvPPPw+tVovCwkJeywHIysrCRRddhKNHj/LfY4wkffjQ6/WYMWMGtm7dKj/n9/uxdetWVFRUJHBkQ9eYMWNQVFQUcs2sVit2794tX7OKigq0t7ejurpaPmbbtm3w+/0oLy+Xj9mxYwc8Ho98zJYtWzBx4kRkZ2cr9NXElxACDzzwANavX49t27ZhzJgxIa/PmDEDOp0u5FrW1tbi5MmTIddy//79IWFuy5YtMJvNmDx5snxMz3NIxyTzv2G/3w+Xy8VrGIU5c+Zg//79qKmpkR+XX345Fi1aJH/Maxm9zs5O1NXVobi4mP8eYyXRHa9KWLdunTAYDGLNmjXi0KFD4r777hNZWVkhncipxmazib1794q9e/cKAOJXv/qV2Lt3r/jyyy+FEIGltllZWWLDhg1i37594pZbbgm71PYrX/mK2L17t/jggw/EhAkTQpbatre3i8LCQvGd73xHHDhwQKxbt06kpaUl1VLb+++/X1gsFrF9+/aQZXkOh0M+ZsmSJWLkyJFi27ZtYs+ePaKiokJUVFTIr0vL8ubNmydqamrEpk2bRH5+fthleT/+8Y/F4cOHxcqVK5NqWd5jjz0mqqqqxPHjx8W+ffvEY489JlQqlXjnnXeEELyGg9FztYsQvJaR+OEPfyi2b98ujh8/Lj788EMxd+5ckZeXJ5qbm4UQvIaxkBLhQwghXnjhBTFy5Eih1+vFFVdcIXbt2pXoISXUe++9JwBc8Fi8eLEQIrDc9vHHHxeFhYXCYDCIOXPmiNra2pBztLa2ijvuuENkZGQIs9ksvvvd7wqbzRZyzGeffSauueYaYTAYxIgRI8SKFSuU+hIVEe4aAhCrV6+Wj+nq6hLf//73RXZ2tkhLSxPf+MY3RENDQ8h5Tpw4IRYsWCBMJpPIy8sTP/zhD4XH4wk55r333hOXXnqp0Ov1YuzYsSHvMdz927/9mxg1apTQ6/UiPz9fzJkzRw4eQvAaDsb54YPXsn+33367KC4uFnq9XowYMULcfvvt4ujRo/LrvIaDpxJCiMTUXIiIiCgVJX3PBxEREQ0tDB9ERESkKIYPIiIiUhTDBxERESmK4YOIiIgUxfBBREREimL4ICIiIkUxfBAREZGiGD6IiIhIUQwfREREpCiGDyIiIlIUwwcREREp6v8Hhu3KdCJNsGIAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(fits.open(a)[0].data[451])\n" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T18:08:29.558467Z", - "start_time": "2024-02-19T18:08:29.488122Z" - } - }, - "id": "ab3a9fa0b4595d02", - "execution_count": 101 - }, - { - "cell_type": "code", - "outputs": [ - { - "data": { - "text/plain": "[]" - }, - "execution_count": 102, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFLklEQVR4nO3deXxU9b0//tfsk20mG9lIwi4IGKiIGLeioEhbqpb2WrUV2/5s9aK3SqstrXW77Te2/d5Wa5F6by209xa5xZ9otYpFkFAroCCR1cimCWQlJLMls3++f8yckxmyzSQzZ5I5r+fjMQ/JzMnMJ8fAvOb9eX8+RyOEECAiIiJSiDbVAyAiIiJ1YfggIiIiRTF8EBERkaIYPoiIiEhRDB9ERESkKIYPIiIiUhTDBxERESmK4YOIiIgUpU/1AM4XDAbR1NSEnJwcaDSaVA+HiIiIYiCEgMPhQFlZGbTawWsboy58NDU1oaKiItXDICIiomFobGxEeXn5oMeMuvCRk5MDIDR4i8WS4tEQERFRLOx2OyoqKuT38cGMuvAhTbVYLBaGDyIiojEmlpYJNpwSERGRohg+iIiISFEMH0RERKQohg8iIiJSFMMHERERKYrhg4iIiBTF8EFERESKYvggIiIiRTF8EBERkaIYPoiIiEhRDB9ERESkKIYPIiIiUhTDBxERqdrpzm6s3XECth5fqoeiGqPuqrZERERKuu2/9qDhXDc+bnXg17fMTfVwVIGVDyIiUrWGc90AgLeOtKZ4JOrB8EFERARApHoAKsLwQUREBCDDqEv1EFSD4YOIiAhAjoltkEph+CAiIgKQxfChGIYPIiJSLY8/IP85y8RpF6UwfBARkWo53X75z5lGVj6UwvBBRESq5fL0Vj6E4HoXpTB8EBGRajk8vbuaBpg9FMPwQUREqhVZ+QgEgykcibowfBARkWo5IysfQZY+lMLwQUREquWMqnwwfCiF4YOIiFTL5eld7cLwoRyGDyIiUq3IpbYMH8ph+CAiItVyRlY+uNRWMXGFj7Vr16KqqgoWiwUWiwXV1dV444035McXLlwIjUYTdbv77rsTPmgiIqJEiJx28XOtrWLi2s6tvLwcTz75JKZNmwYhBP74xz/ixhtvxP79+zFr1iwAwF133YUnnnhC/p7MzMzEjpiIiChBIisfQVY+FBNX+Fi2bFnU1z/72c+wdu1a7N69Ww4fmZmZKCkpSdwIiYiIkiQyfPjZ86GYYfd8BAIBbNy4ES6XC9XV1fL9f/7zn1FYWIjZs2dj9erV6O7uHvR5PB4P7HZ71I2IiEgJkdMuQYYPxcR9FZ2DBw+iuroabrcb2dnZ2Lx5M2bOnAkAuO222zBhwgSUlZXhwIED+MEPfoD6+nq89NJLAz5fTU0NHn/88eH/BERERMPEykdqaEScV9Lxer1oaGiAzWbDiy++iN///veora2VA0ik7du3Y9GiRTh+/DimTJnS7/N5PB54PB75a7vdjoqKCthsNlgsljh/HCIiotgtffofONocqriXWc14d/WiFI9o7LLb7bBarTG9f8dd+TAajZg6dSoAYN68eXj//ffx9NNP47nnnutz7IIFCwBg0PBhMplgMpniHQYREdGIuVj5SIkR7/MRDAajKheR6urqAAClpaUjfRkiIqKE6/H1bq/O1S7KiavysXr1aixduhSVlZVwOBzYsGEDduzYgTfffBMnTpzAhg0b8LnPfQ4FBQU4cOAAHnjgAVx99dWoqqpK1viJiIiGze3tDR+sfCgnrvDR1taGO+64A83NzbBaraiqqsKbb76J6667Do2NjXjrrbfw1FNPweVyoaKiAsuXL8fDDz+crLETERGNSGTlg9urKyeu8PH8888P+FhFRQVqa2tHPCAiIiIl+ALBqGoHw4dyeG0XIiJSpciqB8BpFyUxfBARkSpF9nsA3GRMSQwfRESkSqx8pA7DBxERqZIUPnRajXwfqx/KYPggIiJV6g5Pu2SbetdesPqhDIYPIiJSJXc/4YMbjSmD4YOIiFRJmnZh5UN5DB9ERKRKUvjIMfeGD+71oQyGDyIiUqWe8LRLlonhQ2kMH0REpEpunxQ+dNCEF7wwfCiD4YOIiFRJmnYxG3TQhdMHw4cyGD6IiEiVerxBAECGQSfv9RHgahdFMHwQEZEqSZWPqPARYPhQAsMHERGpUo/XDwDIMLLyoTSGDyIiUqWong8pfASDqRySajB8EBGRKvX4ens+9HL4SOWI1IPhg4iIVEna5yPDqIM2vNrFz8qHIhg+iIhIldz9NZxyqa0iGD6IiEiV+u/5YPhQAsMHERGpkjTtkhmx2oVXtVUGwwcREamSPO1ijNzhNJUjUg+GDyIiUqXITca0nHZRFMMHERGpUre377VdOO2iDIYPIiJSpZ6IaRdWPpTF8EFERKoTCAp4/ZEXlgvfz8qHIhg+iIhIdaRmU0AKH6G3Q15YThkMH0REpDo9EeHDpNdCF5p1YeVDIQwfRESkOtIeHya9FlqtpnefD/Z8KILhg4iIVMfj7202BSBf24WVD2UwfBARkeq4w1e0NetD4YPbqyuL4YOIiFQncpktAG6vrjCGDyIiUh1ptYtJH3ob1HJ7dUUxfBARker0ROxuCoANpwpj+CAiItVxR2wwBvSGDz/DhyLiCh9r165FVVUVLBYLLBYLqqur8cYbb8iPu91urFy5EgUFBcjOzsby5cvR2tqa8EETERGNhDTtYjaE3gZ1XO2iqLjCR3l5OZ588kns27cPe/fuxbXXXosbb7wRhw8fBgA88MADePXVV7Fp0ybU1taiqakJX/rSl5IycCIiouHqDR+cdkkFfTwHL1u2LOrrn/3sZ1i7di12796N8vJyPP/889iwYQOuvfZaAMC6detw4YUXYvfu3bjssssSN2oiIqIRkMKHNO3CC8spa9g9H4FAABs3boTL5UJ1dTX27dsHn8+HxYsXy8fMmDEDlZWV2LVrV0IGS0RElAjSPh8mqfIR3l6dS22VEVflAwAOHjyI6upquN1uZGdnY/PmzZg5cybq6upgNBqRm5sbdXxxcTFaWloGfD6PxwOPxyN/bbfb4x0SERFRXHpY+UipuCsf06dPR11dHfbs2YN77rkHK1aswJEjR4Y9gJqaGlitVvlWUVEx7OciIiKKBRtOUyvu8GE0GjF16lTMmzcPNTU1mDNnDp5++mmUlJTA6/Wiq6sr6vjW1laUlJQM+HyrV6+GzWaTb42NjXH/EERERPE4v+FUr2PDqZJGvM9HMBiEx+PBvHnzYDAYsG3bNvmx+vp6NDQ0oLq6esDvN5lM8tJd6UZERJRMUs+HPO2i4T4fSoqr52P16tVYunQpKisr4XA4sGHDBuzYsQNvvvkmrFYrvvWtb2HVqlXIz8+HxWLBfffdh+rqaq50ISKiUaXPtAuX2ioqrvDR1taGO+64A83NzbBaraiqqsKbb76J6667DgDw61//GlqtFsuXL4fH48GSJUvw7LPPJmXgREREw9Vz3rSLlj0fioorfDz//PODPm42m7FmzRqsWbNmRIMiIiJKpoE2GeOF5ZTBa7sQEZHqSD0ffXY4ZeVDEQwfRESkOn12ONVwnw8lMXwQEZHq9G04Dd3P8KEMhg8iIlKd8xtOddrQ2yHDhzIYPoiISHX69HxwtYuiGD6IiEh1Bpp24T4fymD4ICIiVQkGBTz+83Y45YXlFMXwQUREqiIFD4DTLqnC8EFERKoiTbkA/ezzwcqHIhg+iIhIVaSVLkadVg4dvdurp2xYqsLwQUREqiJVPkyG3rdAVj6UxfBBRESq0nPe7qZAb/jwB3lxFyUwfBARkaqcv8cHwAvLKY3hg4iIVMVz3h4fQO9qF15YThkMH0REpCr9Tbtwnw9lMXwQEZGqSNMupqhpl9B/WflQBsMHERGpiru/yoeGlQ8lMXwQEZGq9PTX88FpF0UxfBARkar0XlSut/KhZ/hQFMMHERGpyvkXlQMidzhl+FACwwcREalKj7dv5YM7nCqL4YOIiFSlv2kXeaktKx+KYPggIiJV6bfhVMMdTpXE8EFERKoy2PbqnHZRBsMHERGpits/yD4fnHZRBMMHERGpits78D4frHwog+GDiIhURap89Dft4mf4UATDBxERqcpgPR/cZEwZDB9ERKQq/e7zEe754IXllMHwQUREqtJvw2n43ZCVD2UwfBARkaoM2nDKyociGD6IiEhV3P5+ej407PlQEsMHERGpirS9ekZ/26szfCiC4YOIiFRDCCFvr26KmHbRy9MuKRmW6jB8EBGRangDQUhtHf3tcOoP8uIuSogrfNTU1GD+/PnIyclBUVERbrrpJtTX10cds3DhQmg0mqjb3XffndBBExERDYe0xwcw0LVdFB+SKsUVPmpra7Fy5Urs3r0bW7duhc/nw/XXXw+XyxV13F133YXm5mb59otf/CKhgyYiIhoOqd9Dp9XAoOu72oXXdlGGPp6Dt2zZEvX1+vXrUVRUhH379uHqq6+W78/MzERJSUliRkhERJQgUvgw66M/e2u52kVRI+r5sNlsAID8/Pyo+//85z+jsLAQs2fPxurVq9Hd3T3gc3g8Htjt9qgbERFRMnSH9/jIMEZ/9pYqHwAvLqeEuCofkYLBIO6//35cccUVmD17tnz/bbfdhgkTJqCsrAwHDhzAD37wA9TX1+Oll17q93lqamrw+OOPD3cYREREMZNWumQadVH3S/t8AKGpFy00oOQZdvhYuXIlDh06hHfeeSfq/m9/+9vyny+66CKUlpZi0aJFOHHiBKZMmdLneVavXo1Vq1bJX9vtdlRUVAx3WERERAOSrusSudIF6N1eHQhNvZz3MCXYsMLHvffei9deew07d+5EeXn5oMcuWLAAAHD8+PF+w4fJZILJZBrOMIiIiOLSO+0SnS70EemDfR/JF1f4EELgvvvuw+bNm7Fjxw5MmjRpyO+pq6sDAJSWlg5rgERERIky0LRLVOWDK16SLq7wsXLlSmzYsAGvvPIKcnJy0NLSAgCwWq3IyMjAiRMnsGHDBnzuc59DQUEBDhw4gAceeABXX301qqqqkvIDEBERxarH6wfQd9olsueDDafJF1f4WLt2LYDQRmKR1q1bhzvvvBNGoxFvvfUWnnrqKbhcLlRUVGD58uV4+OGHEzZgIiKi4Rpo2iVytQunXZIv7mmXwVRUVKC2tnZEAyIiIkqWnn4uKgcgvCM3IASnXZTAa7sQEZFqSKtdzu/5AHqnXrjFevIxfBARkWoMtMkYAGi5xbpiGD6IiEg1Bpp2ASIrHwwfycbwQUREqjHYtIs+XPnwM3wkHcMHERGpRs8Aq12AiGkXho+kY/ggIiLV6B5s2iUcPoLs+Ug6hg8iIlINaZOx/qZdtBpWPpTC8EFERKohNZya+1tqG35HZPhIPoYPIiJSDWmpbeZgq1047ZJ0DB9ERKQavatdBtnng5WPpGP4ICIi1ZD3+TD2ffvTM3wohuGDiIhUI6YdThk+ko7hg4iIVCEQFPD6QxduGWyHU26vnnwMH0REpArSlAswwIXltLywnFIYPoiISBW6w3t8aDSASd/37U/LyodiGD6IiEgV3N7eKRdNOGhE6q18MHwkG8MHERGpQrdv4N1NATacKonhg4iIVEFa6WLup9kUAHThYginXZKP4YOIiFTBLW8w1n/40GtDb4msfCQfwwcREanCYHt8AICW13ZRDMMHERGpQre0u6mh/7c+ueGU0y5Jx/BBRESq4B7kui5AxFJbVj6SjuGDiIhUQdrno7/dTYHeygfDR/IxfBARkSrI0y4DNJxK26tz2iX5GD6IiEgVhlrt0rvPh2JDUi2GDyIiUgV5tcsA0y56LbdXVwrDBxERqYIrHD6yTAMttQ2HD5Y+ko7hg4iIVMHlGXx7dZ18YTnFhqRaDB9ERKQK0mqX7AEqH7ywnHIYPoiISBVcnnDD6UDTLhr2fCiF4YOIiFTBFa58ZA007cLt1RXD8EFERKog9XwM1HDKaRflMHwQEZEqSEtts4baXp3TLknH8EFERKrglFa7mIbY54OVj6SLK3zU1NRg/vz5yMnJQVFREW666SbU19dHHeN2u7Fy5UoUFBQgOzsby5cvR2tra0IHTUREFA8hhFz5GGi1i5bhQzFxhY/a2lqsXLkSu3fvxtatW+Hz+XD99dfD5XLJxzzwwAN49dVXsWnTJtTW1qKpqQlf+tKXEj5wIiKiWHn8QTlUDL3PB8NHsvUf/wawZcuWqK/Xr1+PoqIi7Nu3D1dffTVsNhuef/55bNiwAddeey0AYN26dbjwwguxe/duXHbZZYkbORERUYykZlMAyByg54MNp8oZUc+HzWYDAOTn5wMA9u3bB5/Ph8WLF8vHzJgxA5WVldi1a1e/z+HxeGC326NuREREiSRNuZgNWjlknI8XllPOsMNHMBjE/fffjyuuuAKzZ88GALS0tMBoNCI3Nzfq2OLiYrS0tPT7PDU1NbBarfKtoqJiuEMiIiLql2uI3U2B3mmXIKddkm7Y4WPlypU4dOgQNm7cOKIBrF69GjabTb41NjaO6PmIiIjO13tdl4HDBxtOlRNXz4fk3nvvxWuvvYadO3eivLxcvr+kpARerxddXV1R1Y/W1laUlJT0+1wmkwkmk2k4wyAiIoqJvLX6AM2mABtOlRRX5UMIgXvvvRebN2/G9u3bMWnSpKjH582bB4PBgG3btsn31dfXo6GhAdXV1YkZMRERUZyGuqgcAOh14fDBy9omXVyVj5UrV2LDhg145ZVXkJOTI/dxWK1WZGRkwGq14lvf+hZWrVqF/Px8WCwW3HfffaiuruZKFyIiShnnEBeVA7jDqZLiCh9r164FACxcuDDq/nXr1uHOO+8EAPz617+GVqvF8uXL4fF4sGTJEjz77LMJGSwREdFwdA9xUTmg98JyXGqbfHGFDxFDGjSbzVizZg3WrFkz7EERERElktTzMdBF5QBWPpTEa7sQEVHak69oO2jlg6tdlMLwQUREaU/a52Owng95h1NWPpKO4YOIiNJet2fwi8oBveHDz9UuScfwQUREac8pVT4GmXYxaENviX5OuyQdwwcREaW9brnnY+DKh0Efqnz4eHGXpGP4ICKitOfySvt8DFL5CK+1ZfhIPoYPIiJKe053DDucaqXwwWmXZGP4ICKitOcMT7vkmAcOH0a91HDKykeyMXwQEVHa6w0fhgGPkSofXlY+ko7hg4iI0poQAg63D8Dg0y7s+VAOwwcREaU1jz8o93Fkc9plVGD4ICKitCZNuQBA9iBLbdlwqhyGDyIiSmuOiJUu2vAupv3htItyGD6IiCitxbLMFgAMOm4yphSGDyIiSmsOT6jZdLBltkBv5YPXdkk+hg8iIkprcuVjiPChD1c+vKx8JB3DBxERpTVHjNMuRvZ8KIbhg4iI0losu5sCvdMuQQEEeGXbpGL4ICKitCaHD9PAu5sCvdMuAKsfycbwQUREac0RY8+HVPkAAD8rH0nF8EFERGktlq3Vgejw4fOz8pFMDB9ERJTWYu350Gk1kPYg47RLcjF8EBFRWpOW2g4VPgBAL6144bRLUjF8EBFRWutdajt4wykQsdyW0y5JxfBBRERpzRHjtAvQu8W6P8jwkUwMH0RElNac4e3Vh1rtAvROu3j9nHZJJoYPIiJKa3LPxxCrXYDeaRdWPpKL4YOIiNKWECLmfT6A3o3GuNoluRg+iIgobfX4AvKGYRbz0A2nBk67KILhg4iI0patJ9TvoddqkGnUDXm8SR96W/T4A0kdl9oxfBARUdqSwoc1wwCNRjPE0ZHhg9MuycTwQUREacvW3Rs+YmE2hKojbh8rH8nE8EFERGlLqnxYYgwf8VQ+zjo9CHAn1GFh+CAiorQVOe0SC6ny4Rmi8vFRix3zf/YW7vmffSMboErFHT527tyJZcuWoaysDBqNBi+//HLU43feeSc0Gk3U7YYbbkjUeImIiGIWb/iItfLx9kftEAL4+5FWBFn9iFvc4cPlcmHOnDlYs2bNgMfccMMNaG5ulm8vvPDCiAZJREQ0HPZhVj6G6vno8frlP591eoY5OvUaeseV8yxduhRLly4d9BiTyYSSkpJhD4qIiCgRklX5OOvyyn9usrlRZDEPc4TqlJSejx07dqCoqAjTp0/HPffcg46OjgGP9Xg8sNvtUTciIqJEGG7Px1CVjza7W/7zORcrH/FKePi44YYb8Kc//Qnbtm3Dz3/+c9TW1mLp0qUIBPr/H1lTUwOr1SrfKioqEj0kIiJSqWRVPtocvYFD2r6dYhf3tMtQvvrVr8p/vuiii1BVVYUpU6Zgx44dWLRoUZ/jV69ejVWrVslf2+12BhAiIkqIuJfaxlj5aI2ofEh9JRS7pC+1nTx5MgoLC3H8+PF+HzeZTLBYLFE3IiKiREhG5SMQFGiPqHzYWfmIW9LDx+nTp9HR0YHS0tJkvxQREVEUW08oGCSy56PD6UHk6lq7m5WPeMU97eJ0OqOqGKdOnUJdXR3y8/ORn5+Pxx9/HMuXL0dJSQlOnDiBhx56CFOnTsWSJUsSOnAiIqLBCCF6l9pmxlf5cPsGrny02qMbTNnzEb+4w8fevXtxzTXXyF9L/RorVqzA2rVrceDAAfzxj39EV1cXysrKcP311+Pf//3fYTKZEjdqIiKiIbh9QXgDoRAR9w6ng1zVNrLfA2DPx3DEHT4WLlwIIQbeze3NN98c0YCIiIgSobM7tBeHQadBllEX0/fEUvmIXOkCsPIxHLy2CxERpaVz4Y3A8rOM0Gg0MX1Pb+VjsGmXUOWjMNsIAHB6GD7ixfBBRERpqUMOH7FP+8dyYbk2Ryh8VOZnAgB6vIMvy6W+GD6IiCgtSTuP5mfF1u8BxLbUtt0RCjUTCrIADL0nCPXF8EFERGmpwzn8ykfPIIFCCjXleRlDHkv9Y/ggIqK0JPV8FGQZY/6ezHBjard34D4OaTpnfC7Dx3AxfBARUVqKbDiNVZYptAjU7QsiEOx/ZadUUSnPC/V8dLPnI24MH0RElJY6hhE+MiOW5PZX/XD7AvLqFmnaxesfOKhQ/xg+iIgoLQ1n2sWk10KnDS3L7a+iIT2nQadBkaW3l4RNp/Fh+CAiorTUGQ4KeXGED41GE9H30TdQSFMueZlGZBh6qyTs+4gPwwcREaUdIYS8Gdi4nPgu7yGFD1c/m4dJu6ZKG5dJAYR7fcSH4YOIiNKO3e2HKxwIyqwZcX1vljHUdNpf5UMKH7nhC9VlGIdemkt9MXwQEVHaabGFqh65mQY5IMQq0xSufPTTcNrVHbqIXF5maCqHlY/hYfggIqK002TrAQCUxln1AIBMqfLhGazyEQ4fg/SH0MAYPoiIKO00d4UqH2VWc9zfK10Bd7DKhzztEq58cLVLfBg+iIgo7TSHKx8lwwgfmSap8tFf+JBWu0SHD1Y+4sPwQUREaadJqnzkxj/t0lv56G/aRap8hKZdTIbQ2ygrH/Fh+CAiorTTLPd8DKPyEe756K+JtLfyEd1w6vYzfMSD4YOIiNJOc3i1y3AaTrMGWe3SKa92CU27mOWej+CwxqlWDB9ERJRWhBBo6gpVPspyh1/5iGW1i5nTLsPC8EFERGmlq9sHjz9UiRhOw+lAq13cvgAc7tB947JDu6ZytcvwMHwQEVFakfb4KMw2wqSPb4MxIGK1y3k9H2edHgCAUaeFJSN0jJmbjA0LwwcREaUVaY+P4fR7AANf26XdEQof43JM0GhCV741s+F0WBg+iIgorYxkpQvQe22X86dd2iLCh4QNp8PD8EFERGmlSV7pMszwYeq/4bS93/ARehvlheXiw/BBRERppTm80qV0GBuMAUCOORQ+HJ6hKx9Sw6mH4SMuDB9ERJRWmkdY+cgOVz4cbl/U/afOugAAlfmZ8n2cdhkehg8iIkorrfZQ+CixDC98SJUPty8IX6A3VJxocwIApo7Llu/jtMvwMHwQEVHaEEKgxT6y1S5SzwfQu+IlGBQ4eTYcPooiwwf3+RgOhg8iIkobth6fPAVSZDENcXT/DDqtXNGQNhU709UDty8Io06L8rzeUCPv88HwEReGDyIiShtS1SMv0yAHg+HINoWu3eIMVz6Ot4eqHpMKs6DX9b519jacsucjHgwfRESUNlrCzaYlw5xykVjCfR9S+JD6PaYUZUUdx2mX4WH4ICKitCGHj2FOuUiyzdErXk609202BdhwOlwMH0RElDZa7aG9OIZzQblIvcttw9MucuUjOnxEXlhOCDGi11QThg8iIkob51yh8FGQNcLKhyl62kXa42PKeZUPUzh8BAXgDbDvI1Zxh4+dO3di2bJlKCsrg0ajwcsvvxz1uBACjzzyCEpLS5GRkYHFixfj2LFjiRovERHRgLp6QtMkuZmGET2PNO3idPvhcPtw1ukFAEwoyIw6LiOiqZUbjcUu7vDhcrkwZ84crFmzpt/Hf/GLX+A3v/kNfve732HPnj3IysrCkiVL4Ha7RzxYIiKiwXR2S+HDOKLnyYmofHza0Q0AKMw2IsccHWoMOg20oQvccov1OOiHPiTa0qVLsXTp0n4fE0LgqaeewsMPP4wbb7wRAPCnP/0JxcXFePnll/HVr351ZKMlIiIahK07VKHIG2HlQwoZDrcfn3SEplwmFmT1OU6j0cBs0KHbG2DTaRwS2vNx6tQptLS0YPHixfJ9VqsVCxYswK5du/r9Ho/HA7vdHnUjIiIajt7KR2KmXRxuPz4J93tM6Cd8AJFNp5x2iVVCw0dLSwsAoLi4OOr+4uJi+bHz1dTUwGq1yreKiopEDomIiFSkK1z5sGaMbNqlt+HUh0/C0y6TCjP7PZa7nMYv5atdVq9eDZvNJt8aGxtTPSQiIhqD/IEg7OGlsSOfdunt+Riy8mEMhY9ur39Er6kmcfd8DKakpAQA0NraitLSUvn+1tZWzJ07t9/vMZlMMJlGtiSKiIhICh4AYM0Y4bRLxD4fZzp7APTf8wEAWVL48LDyEauEVj4mTZqEkpISbNu2Tb7Pbrdjz549qK6uTuRLERERRekMT7nkmPVR118ZDmm1zMl2Fzpcoec9f2t1iXQVXBcrHzGLu/LhdDpx/Phx+etTp06hrq4O+fn5qKysxP3334+f/vSnmDZtGiZNmoSf/OQnKCsrw0033ZTIcRMREUXpSlCzKQDkZ4XCh7TJWHleBjKN/b9lSve7WPmIWdzhY+/evbjmmmvkr1etWgUAWLFiBdavX4+HHnoILpcL3/72t9HV1YUrr7wSW7Zsgdk8sq1uiYiIBtMlL7MdWbMpAOSf9xwXFOcMeGy2KTTt4vKw8hGruMPHwoULB92/XqPR4IknnsATTzwxooERERHFQ6p8jLTfAwhN3ei0GgSCofe7acXZAx6bdd5W7DS0lK92ISIiSoTOBFY+tFpN1IqZaUUDVz6k8MHVLrFj+CAiorRgS9B1XSTjczPkP19YOkj4MEqVD/Z8xIrhg4iI0oJU+RjpdV0kkft6TB+k5yPLxH0+4sXwQUREaUHeWj0BPR8AcEf1BBh0Gtx5+cRBl+7KS23Z8xGzhG4yRkRElCq2cPjIy0pM+LhkYj4OP34DjPrBP6ez4TR+rHwQEVFakKddRnhdl0hDBQ8gYodTL3s+YsXwQUREaSGRm4zFg5WP+DF8EBFRWuhKcMNprLLZ8xE3hg8iIhrzvP4gXOFpj5Fe0TZembywXNwYPoiIaMzr6glVPTQaIMesbPiQXs/h8cs7otLgGD6IiGjMs0Vsra7TahR97cjt3B1un6KvPVYxfBAR0ZiX6D0+4mHUa+UVL1LTKw2O4YOIiMa8VDWbSqTX7eph+IgFwwcREY15qVpmK5GmXqQQRINj+CAiojFPajhNxBVth0MKPTZWPmLC8EFERGNeZ0TDaSpI4YM9H7Fh+CAiojFPetNPVeXDGt7SneEjNgwfREQ05vU2nKa48tHDno9YMHwQEdGYl+qGU2mJb6eL4SMWDB9ERDTmdaZ4qW1htgkA0MHwEROGDyIiGvOkVSap2GQMAMblhMJHm92Tktcfaxg+iIhozEt1w2mRJRQ+2p0MH7Fg+CAiojHN7Qugxxe6omxuVooqH+Fpl3MuL3yBYErGMJYwfBAR0ZgmTbnotBrkmPQpGUNeplG+oF2Hk30fQ2H4ICKiMa0rYoMxjUbZK9pKtFoNCrNDUz7tDk69DIXhg4iIxjR5pUuKmk0lUtNpu9Od0nGMBQwfREQ0pqV6jw9JUY4ZANBiY+VjKAwfREQ0ptl6UrvHh6QiLwMA0NjZndJxjAUMH0RENKbJlY8UT7tU5GcCABrOMXwMheGDiIjGtE552iXFlY9w+Ghk+BgSwwcREY1pvdMuqa18VDJ8xIzhg4iIxrTR0nAqVT46u31wuH0pHctox/BBRERjWqovKifJNumRnxUaQ+O5npSOZbRj+CAiojFttDScAmw6jVXCw8djjz0GjUYTdZsxY0aiX4aIiAhAxBVtUzztAvQutz3N5baDSsom+LNmzcJbb73V+yL61Oy1T0RE6a93h9PUTrsAvU2nrHwMLimpQK/Xo6SkJBlPTUREJHP7AnD7QleRTdUVbSMxfMQmKT0fx44dQ1lZGSZPnozbb78dDQ0NAx7r8Xhgt9ujbkRERLEYDVe0jcS9PmKT8PCxYMECrF+/Hlu2bMHatWtx6tQpXHXVVXA4HP0eX1NTA6vVKt8qKioSPSQiIkpT0pRLKq9oG0ne66OzB8GgSPFoRq+Eh4+lS5fiK1/5CqqqqrBkyRK8/vrr6Orqwl/+8pd+j1+9ejVsNpt8a2xsTPSQiIgoTY2WPT4kpVYzdFoNvP4g2p28wNxAkl6jys3NxQUXXIDjx4/3+7jJZILJZEr2MIiIKA2NpmW2AKDXaVGWa0bjuR40nOtGscWc6iGNSknf58PpdOLEiRMoLS1N9ksREZHKdI2SDcYiyU2nHez7GEjCw8f3v/991NbW4pNPPsG7776Lm2++GTqdDrfeemuiX4qIiFSuwxUKHwVZoyd8VORJfR8MHwNJ+LTL6dOnceutt6KjowPjxo3DlVdeid27d2PcuHGJfikiIlK5dkeor6IwZ/RM33OX06ElPHxs3Lgx0U9JRETUr9FY+ZCmXU7z+i4D4rVdiIhozDobrnyMY+VjTGH4ICKiMavDFQofBVmjJ3xMCIePFrsbTo8/xaMZnRg+iIhozOpwhqZdCnNGz7RLXpYRpdbQEtujzdy1uz8MH0RENCb5A0Gc65Z6PkZP5QMAZpVZAQCHzthSPJLRieGDiIjGpM5uH4QANBogfxQ1nALArDILAODQGVY++sPwQUREY9LZ8Pbl+ZlG6LSpv65LpNnjQ5WPw02sfPSH4YOIiMakFpsbAEblFuZV5aHw8XGrg02n/WD4ICKiMelMV2gfjbLcjBSPpK9iixnleRkICmB/Q2eqhzPqMHwQEdGY1BQOH+NzR1/lAwAumZAHAHj/E4aP8zF8EBHRmNQ0iisfADBvYj4AYN+n51I8ktGH4YOIiMakpnDPR+koDR9S5WN/Qxf8gWCKRzO6MHwQEdGYNNqnXS4ozkGOWY9ubwCHm7jkNhLDBxERjTmBoJBXu5RaR2flQ6fVoHpyAQCg9uP2FI9mdGH4ICKiMed0Zzf8QQGjXjsql9pKrplRBAB4u74txSMZXRg+iIhozDnZ7gIATCrIGnUbjEVaOH0cAKCusQvnXN4Uj2b0YPggIqIx50S7EwAweVxWikcyuFJrBi4stUAIYPtHrH5IGD6IiGjMOXk2VPmYMi47xSMZ2g2zSgAAr37YlOKRjB4MH0RENObUtzgAAFOLRn/4+OLcMgDAO8fPoiN8PRq1Y/ggIqIxxR8Iyhdsky7gNppNKsxCVbkVgaDA3w42p3o4owLDBxERjSkn2l1w+4LIMuowuXB093xIbpo7HgDw37s+hRAixaNJPYYPIiIaUw6eCVU9Zo23QjuKV7pE+vIl5cgy6nCszck9P8DwQUREY4x0ldiqMTDlIrGYDbhlfiUA4Lnak6qvfjB8EBHRmPL+J6ELtV0SvnDbWPHNKyfCqNNi18kO7Dx2NtXDSSmGDyIiGjM6XV583Bra42P+xLwUjyY+5XmZuKN6AgDgiVcPw+0LpHhEqcPwQUREY8abh1sAABeWWlCQbUrxaOJ337XTUJhtwol2F55661iqh5MyDB9ERDRm/DW8UdeyOaUpHsnwWDMN+D83zwYA/OfOE/gg3L+iNgwfNCr4A0HYenypHgYRjWL1LQ68e6IDALCsqizFoxm+62eV4ObPjEdQAA9u+lCV0y8MH5RyTo8fX3luF+b/9C0cbbanejhENEr99u3jAICls0tQkZ+Z4tGMzKPLZqIoJzT98qutH6d6OIpj+KCUe/yvh7G/oQveQBAv151J9XBSJhgUePNwCxo6ulM9lKRqc7hR8/pR7D7Zkeqh0BhS19iF1w6EplzuvXZqikczcrmZRtR86SIAwH/94yT2fXouxSNSFsMHpdSHjV3YtO+0/PWBRlsKR5M6Qgg8/uphfOe/9+GmZ/+Jbq8/1UNKiq5uL678+dt4budJ/NsL+xEIqnuvA4qN2xfAg5s+hBDATXPLMKts7OzvMZhFFxZj+cXlEAJ4cNMBVU2/MHxQyggh8MRrRwAAM0pyAACHmmyqfEP69VvH8MddnwIAzrm82HqkNcUjGpovEMRvtx/DPf+zD+dc3pi+58cvH4LXHwQAtDk8OHC6K4kjpHQghMCPNx/CsTYnCrNNeHTZrFQPKaEeWTYTxRYTTp514f++WZ/q4SiG4YNS5oX3GrHv005kGHR4/s75yDbp4XD7Vdf38Yd3TuE320JL7nIzDQCAl/eP7umnDqcHX/v9Hvzfv3+MNw614LmdJ4b8nj/v+RR/OxC6qJbZEPqn5+16bjNNAxNC4Kv/uRv//wenodUAT90yF3lZxlQPK6GsGQY8+aUqAMDz/zwlb6CW7hg+KCW2HGrBI68cAgD826JpGJ+bgeopBQCAv4fX8aeDDxo6seIP78lz1RK3L4Ath1pw++93y9WfVdddgBfvvhwA8I9jZ9HVHVs1QWl1jV34wjPvYM+p3n8kN39wBv5AsN/j/YEg/mf3p3jklcMAgJXXTMG/3xhaarijvi35AyZF9HgD+OSsCyfanehwekZcwQwGBX76t6Py79nPbr4IV04rTMRQR51rZhThK/Ok6ZcP03baNZI+1QMgdalvceBHmw9i36ehte3L5pThO1dPlv+89Ugr1r/7Cb5WPQGZRj1eP9iMQ2dsqMzPxNcumwCzQZfK4cdMCIEN7zXgx5tDAeu9U+dw2eQCFGab8Id3TuFXWz+G0xP6B0arCW08dN+1U6HRaDCjJAcftTjw8v4zuPOKSQBCvRItdjcmF2bDqE/+Zwanx4//3vUpTHotVlw+ESfbndh1sgMftTjw4t7T8AaCmFyYhWdu+wy+9vs9aHN48M7xs1g4vQgA8FGLHT/efAhHm+3QAHB5Q3PZX55Xju9fPx3tTg8A4MBpG9ocbhTlmAGE3nCCQkCv4+eiQFBANwovmiaEQJvDg4OnbThwxoaDp7twtNmBFrs76jidVoPqyQX44twy3DC7BBazIebXcPsCePDFA3g1vKfHXVdNwq2XVib05xhtHv7CTLxz/Cw+6ejGj146iF/fMhcazej7/58oGpGkq9usWbMGv/zlL9HS0oI5c+bgmWeewaWXXjrk99ntdlitVthsNlgslmQMLe14/UEYdJpR/4u695Nz+Ob692F3+6HTanD7gkr86HMXyoEiEBS4ac0/cfCMDaVWM2w9PnR7exuwZo+34Nnb5qGyoHeJncsTmqYZn5eBUmuG4j9TfzqcHjzy18PyFIPkzssnYlaZBQ++eAAAUGo144tzy/C1BROilg2u++cpPP7qEWQadfjq/Ersa+jEgdNdEAIYn5uBp746F/OTdE0Lh9uHTXtP49kdJ3A2HBA0GuD8fyWun1mM//iXOcgxG/DYXw9j/bufYHJhFjbcdRl2ftyOJ147IocrAMjPMuKuqybj7s9Oln9Pv/jbd3DgtA1LZ5fg/7tqMjbvP43XD7bA3uPDt6+ejFXXXTCmQ4jT48cHn3aiIj8Tk2K87LvXH8RbR1vxnztP4sDpLnx5Xjl+vrxqVPzdtnX78JNXDuHdEx3y78b5Mo066LQaONzRn9yNei0WX1iEG+eOx8Lp42DSD/wh4pOzLnz3f+vwYWMX9FoNfvmVKtz8mfKE/iyj1XunzuHW/9qNQFDg8S/OworLJ6Z6SHGJ5/07KeHjf//3f3HHHXfgd7/7HRYsWICnnnoKmzZtQn19PYqKigb9XoaP2Hj9QWz/qBV/3tOAd46fxfTiHPzhzvkoyx35G7AQAkebHXjraCtOtDtxw6wSLL1oZLsJvnWkFfe+8AHcviAurszFb279DMrz+q7TP9xkw/K178LtC5XwJxdm4apphXjlwyZ0dfug02ows9SCvCwjOpweHG22IygAk16L//7WAlw6afhvym5fAHa3D76AgMWsR06Mn9Q27GnApn2NuLA09Pv6al0THJ5QwPr+9dMxozQH31j3ftT3fOezk/GDJTP6vRx4ICjw9ef3yJspSYw6LbyBIPRaDb5ySTlu/kw5LijOhjXDMKI3JyEEjrU58efdn+LFfaflKkUkvVaDuRW5uKAkBzfMKsFV0wrl12yxubF87bs409UT9T2XTc7H96+fDo0GqCrPheG8ILHz43Z8Y/37A5bnx+dm4MqphSiymJBl0iMv04BrphehyGIe9s+aKIGgwEctdnzwaSccHj+uu7AYhdkmHGm24x/HzmLXyQ4cOhNqns4w6PCrf5mDJbNKoNVq4PUHcc7lhdPjh9Pjh63HB1uPD4fO2PDSB6dx1hk93fbQDdPxrwtTv7T0P/5ej2e2h/bZ0GqAqUXZqCrPRVW5FbPKrJgyLkv+XfQHgmg4142/HWjGy3VncKLdJT+PxazHklklqCq34oLiHFxQnINssx6nO3vwl72N+MM7p+DxB2Ex6/G7r8/D5VPSc6plIM/VnkDNGx8BAB75wkzceflE+d8J6e16NITR/qQ8fCxYsADz58/Hb3/7WwBAMBhERUUF7rvvPvzwhz8c9HvHavgQQsAT7uI36rR93lSkf+BNei0q8zPj+uUJBAUaznXjcJMNH7c6cbTZjt0nOuDwRH+6mFaUjTuvmAgAaOjoxqcd3aE36zILZpZacGGpBXlZBhi0ofE53D4029xo6urBJ2ddOHnWhZPtLnzUYu/zD+BtCypRNd4Kty+Acy4vOlxe2Hp8uLDUgutmFmN8bgYyjaFPM3a3Hy02N5ptPWi2ufH2R234e3j1xrUzirDmtouRYRz4k8/xNgd21LfjovFWXDopHxqNBme6evD9v3yIXYPsDZFl1OE7n52CuRW5cPsCcLj9sGQYUJBtRInFjKIcE/Q6LYJBAVuPD6c7e3DyrBN1jV3YffJcVKOrQafBtTOKMLvMihmlFuSY9fD6g/AFQjePPwhfQGB/Qyf+vKehz1guLLXgl1+uwuzwJb+ffusYntr2MYQIncuf3ji73+AhsfX48Nvtx9Dm8OCKqYW4alohLGYDfrT5IF6pi+4fMeq0KMg2oijHhMnjsjG1KBtluWaY9TqYDFp4/QIujx+BiL/qGgBd3T4carJhz8lzUSXzqUXZ+MYVE/GVeRXo6vbi5FkXZpVZBg1jDR3duPW/duNMVw8sZj3uvXYqvnHFpD6B43xvHGzGT145BI8viOopBbh1QSXOOjz4P68fRWd33x1vdVoNrplehGtnFCE7/P/E7QtAAJhZasHEgkxkmfQw6bUIBAV8ARH1vedPWQkh4PYF4fD44PEF0dXtQ2NnN461OnHqrBNZJj0umZiHbJMB3V4/Gjq6sa+hE/s+7ezz6X4oOWY9NAj9/RjMuBwTbrmkAloN8Jvwm/3EgkxYMwxwePxwuv3IMOrw2QvGYd6EPFxQnIOJBVmD/p1KhH97YT/++mETll9cjp/eNDvm1xNC4HCTHa/UncFfP2xCq73/qkmky6cU4Bdfrur3A0q6k1YBrvvnJwCAbJMeeVkG+AMCzTZ3n+M1mtDf59CfNdCE7wNCv/MGnRZGnRZ6Xe+fTQYd7lk4BV+ck9hdYlMaPrxeLzIzM/Hiiy/ipptuku9fsWIFurq68Morr0Qd7/F44PH0/jLa7XZUVFQkPHy0Odz47fbjCITnlINBICCkPwsERfjr8OOBYOiXIHRM71y0xx+EPyhg0mnh9gfQ4w3A6fGjw+WVlxCaDVpML86BThuaCtFpNWi29aDxXOiT4eRxWZhUkAWjXguTXguNRoNAUMg3f1AgEAy9uXV2e3G8zSkHm0hFOSYsn1eOK6YU4r4XPuj3H+uBaDXAYP1gZoMWV04thBDAto9iawo06rTQaTXo6WetukYD3HHZBDz8hZlDviEN5nRnNw6etqHbG0CWSY85FVbkZhhx57r3ohogB6LXaiCAAT9t9zfFEIuvXVYJbfj/9cLpRbhqamGfcNFs64HbF4y5BD+Q906dwwvvNeAfx84OWP6Ol1GnxdUXFOLOyyfhiqkFw/pk5fYFUN/iwAXFOSN+I+z2+rHrRAfqGrtg6/HB6fHjZLsLdY1dMX3/QP8fc0x6FOaYEBQCTrdfrnQNR7ZJj89U5qLHG0BdYxf8QYFxOSZcNa0QV0wpxGVTClCUY0LN6x/hhfcaov5e6LQaZJv0yDbpYckwwJqhR1GOGV+oKsW1M4qg12khhMCvt36MtbUnYhpjYbZRDl56rRYGvRZ6rQa68O+lXhf+r1b6Wiu/aUU9+3kvJcJ3vH4w1Aj+q3+Zgy9dPLxpkEBQYM+pDtR+3I5jrU583OrA6c7Qv4t6rQbzJ+bjm1dOwuILi0btp3slCCHw7I4T+N2OE30+ZCbKzFILXv/uVQl9zpSGj6amJowfPx7vvvsuqqur5fsfeugh1NbWYs+ePVHHP/bYY3j88cf7PE+iw8eJdicW/Udtwp5vOAw6DYQA/MPoApcCzYwSC6aX5GBuZS7mlufKb3CN57qxaW8jPjxtg06rQWV+JiYUZMIXCOJIkx2Hm+w40e7sEzgsZj3KcjNQkZ+JyeOyMKUwG1OKsjB7vBUmvQ5CCGw72oadx9pxurMHZoMW+VlG5GeZYDZoseOjdhxtsff5FJibaUCJxYxSqxnTinOw/OJyTA/v5ZEMgaDAK3VnsHn/GbTZPTAbdbCY9bC7/Tjr8KDV7u5z3guzjZhYkIVZZRZcPCEPl00OvVkAwJ5T53DgdBc+anbgoxYHPP4AjHodjNKnB70WBp0WlgwDbv5MGa6dUZy0n20wHn8AHU4v2h0eNNvcONHuxPE2J9odHnj8Abh9oX6gLJMe+ogwJABkGfWYVpyNSyfm4+IJeWOimfd4mwOb9p7GsTYnur1+GPU6mPVa+IMCB0539anYxUqjAcx6HXLCfx+mFmVj8rgsnHN65WBhNmhRas2QK3IzSnKielIG673y+oM4edYJnUaDwmwTrBmGQStfkWw9vtAYAsFQYDHr0dTlxs6P23Gk2Y7jbU5Fr4u06e7qhPYcuTx+eP1BWDIMo7LBNpU8/gAaz/XA1uODVhOaipTOkUAoYEvhEKL3vtCXAv5A6MOsLxCUK7dHmkPN4JdOysdfvlPd7+sO15gKH0pVPjpdXqx79xNoNYBOo4FWqwl/UgW0Gk34hqhqhVYD+dOsNvw9hvAnBo8/gAyDDhkGHTJNehRkGeU9Gk539qDxXLf8i+ALhP5iXVyZi2AQ2HOqA53dXnj8oV8IIUKvG3XThErEWSY9phZlozI/c8R/Mb3+INz+APyB0C9jVviTVyJIc9c+fxDFFnPSS8DxCoSnWrz+IDQaIC/TqMiqEVJWICjQ7fWj2xuAKRwQpSqIPyBw1uVBu8MDvVaDbLMeFrMBlgwDsoy6Mf1Ju6vbi6YuN3p8fnh8QfiCAj5/EAHRW00Nhv/rDwTl/57v/HMQ+aXT40d+phG3zK8Y0+dK7ZLZNxJP+Ej4UtvCwkLodDq0tkbv0Nja2oqSkpI+x5tMJphMpkQPo4+8LCNWXXdB0l8HAC4sNcjNh/25flbf86AEo16btDfc7AQGmWTQaTXIT7PNiagvnVaDHLNhwP4Ua6YBU8ZlKzyq5MvNNCI3k7/fNLTREhwT/k5kNBoxb948bNu2Tb4vGAxi27ZtUZUQIiIiUqekfFRdtWoVVqxYgUsuuQSXXnopnnrqKbhcLnzjG99IxssRERHRGJKU8HHLLbegvb0djzzyCFpaWjB37lxs2bIFxcWpacojIiKi0SNpO5wO11jd54OIiEjN4nn/Zrs/ERERKYrhg4iIiBTF8EFERESKYvggIiIiRTF8EBERkaIYPoiIiEhRDB9ERESkKIYPIiIiUhTDBxERESlq1F2GVNpw1W63p3gkREREFCvpfTuWjdNHXfhwOBwAgIqKihSPhIiIiOLlcDhgtVoHPWbUXdslGAyiqakJOTk50Gg0CX1uu92OiooKNDY28roxI8DzmBg8j4nB85gYPI+Jo9ZzKYSAw+FAWVkZtNrBuzpGXeVDq9WivLw8qa9hsVhU9QuRLDyPicHzmBg8j4nB85g4ajyXQ1U8JGw4JSIiIkUxfBAREZGiVBU+TCYTHn30UZhMplQPZUzjeUwMnsfE4HlMDJ7HxOG5HNqoazglIiKi9KaqygcRERGlHsMHERERKYrhg4iIiBTF8EFERESKUk34WLNmDSZOnAiz2YwFCxbgvffeS/WQUmrnzp1YtmwZysrKoNFo8PLLL0c9LoTAI488gtLSUmRkZGDx4sU4duxY1DHnzp3D7bffDovFgtzcXHzrW9+C0+mMOubAgQO46qqrYDabUVFRgV/84hfJ/tEUVVNTg/nz5yMnJwdFRUW46aabUF9fH3WM2+3GypUrUVBQgOzsbCxfvhytra1RxzQ0NODzn/88MjMzUVRUhAcffBB+vz/qmB07duDiiy+GyWTC1KlTsX79+mT/eIpZu3Ytqqqq5E2Zqqur8cYbb8iP8xwOz5NPPgmNRoP7779fvo/ncmiPPfYYNBpN1G3GjBny4zyHCSBUYOPGjcJoNIo//OEP4vDhw+Kuu+4Subm5orW1NdVDS5nXX39d/PjHPxYvvfSSACA2b94c9fiTTz4prFarePnll8WHH34ovvjFL4pJkyaJnp4e+ZgbbrhBzJkzR+zevVv84x//EFOnThW33nqr/LjNZhPFxcXi9ttvF4cOHRIvvPCCyMjIEM8995xSP2bSLVmyRKxbt04cOnRI1NXVic997nOisrJSOJ1O+Zi7775bVFRUiG3btom9e/eKyy67TFx++eXy436/X8yePVssXrxY7N+/X7z++uuisLBQrF69Wj7m5MmTIjMzU6xatUocOXJEPPPMM0Kn04ktW7Yo+vMmy1//+lfxt7/9TXz88ceivr5e/OhHPxIGg0EcOnRICMFzOBzvvfeemDhxoqiqqhLf/e535ft5Lof26KOPilmzZonm5mb51t7eLj/Oczhyqggfl156qVi5cqX8dSAQEGVlZaKmpiaFoxo9zg8fwWBQlJSUiF/+8pfyfV1dXcJkMokXXnhBCCHEkSNHBADx/vvvy8e88cYbQqPRiDNnzgghhHj22WdFXl6e8Hg88jE/+MEPxPTp05P8E6VOW1ubACBqa2uFEKHzZjAYxKZNm+Rjjh49KgCIXbt2CSFCQVCr1YqWlhb5mLVr1wqLxSKfu4ceekjMmjUr6rVuueUWsWTJkmT/SCmTl5cnfv/73/McDoPD4RDTpk0TW7duFZ/97Gfl8MFzGZtHH31UzJkzp9/HeA4TI+2nXbxeL/bt24fFixfL92m1WixevBi7du1K4chGr1OnTqGlpSXqnFmtVixYsEA+Z7t27UJubi4uueQS+ZjFixdDq9Viz5498jFXX301jEajfMySJUtQX1+Pzs5OhX4aZdlsNgBAfn4+AGDfvn3w+XxR53LGjBmorKyMOpcXXXQRiouL5WOWLFkCu92Ow4cPy8dEPod0TDr+DgcCAWzcuBEulwvV1dU8h8OwcuVKfP7zn+/z8/Jcxu7YsWMoKyvD5MmTcfvtt6OhoQEAz2GipH34OHv2LAKBQNQvAQAUFxejpaUlRaMa3aTzMtg5a2lpQVFRUdTjer0e+fn5Ucf09xyRr5FOgsEg7r//flxxxRWYPXs2gNDPaTQakZubG3Xs+edyqPM00DF2ux09PT3J+HEUd/DgQWRnZ8NkMuHuu+/G5s2bMXPmTJ7DOG3cuBEffPABampq+jzGcxmbBQsWYP369diyZQvWrl2LU6dO4aqrroLD4eA5TJBRd1VborFq5cqVOHToEN55551UD2VMmj59Ourq6mCz2fDiiy9ixYoVqK2tTfWwxpTGxkZ897vfxdatW2E2m1M9nDFr6dKl8p+rqqqwYMECTJgwAX/5y1+QkZGRwpGlj7SvfBQWFkKn0/XpRG5tbUVJSUmKRjW6SedlsHNWUlKCtra2qMf9fj/OnTsXdUx/zxH5Guni3nvvxWuvvYa3334b5eXl8v0lJSXwer3o6uqKOv78cznUeRroGIvFkjb/GBqNRkydOhXz5s1DTU0N5syZg6effprnMA779u1DW1sbLr74Yuj1euj1etTW1uI3v/kN9Ho9iouLeS6HITc3FxdccAGOHz/O38cESfvwYTQaMW/ePGzbtk2+LxgMYtu2baiurk7hyEavSZMmoaSkJOqc2e127NmzRz5n1dXV6Orqwr59++Rjtm/fjmAwiAULFsjH7Ny5Ez6fTz5m69atmD59OvLy8hT6aZJLCIF7770Xmzdvxvbt2zFp0qSox+fNmweDwRB1Luvr69HQ0BB1Lg8ePBgV5rZu3QqLxYKZM2fKx0Q+h3RMOv8OB4NBeDwensM4LFq0CAcPHkRdXZ18u+SSS3D77bfLf+a5jJ/T6cSJEydQWlrK38dESXXHqxI2btwoTCaTWL9+vThy5Ij49re/LXJzc6M6kdXG4XCI/fv3i/379wsA4le/+pXYv3+/+PTTT4UQoaW2ubm54pVXXhEHDhwQN954Y79LbT/zmc+IPXv2iHfeeUdMmzYtaqltV1eXKC4uFl//+tfFoUOHxMaNG0VmZmZaLbW95557hNVqFTt27Ihaltfd3S0fc/fdd4vKykqxfft2sXfvXlFdXS2qq6vlx6Vleddff72oq6sTW7ZsEePGjet3Wd6DDz4ojh49KtasWZNWy/J++MMfitraWnHq1Clx4MAB8cMf/lBoNBrx97//XQjBczgSkatdhOC5jMX3vvc9sWPHDnHq1Cnxz3/+UyxevFgUFhaKtrY2IQTPYSKoInwIIcQzzzwjKisrhdFoFJdeeqnYvXt3qoeUUm+//bYA0Oe2YsUKIURoue1PfvITUVxcLEwmk1i0aJGor6+Peo6Ojg5x6623iuzsbGGxWMQ3vvEN4XA4oo758MMPxZVXXilMJpMYP368ePLJJ5X6ERXR3zkEINatWycf09PTI/71X/9V5OXliczMTHHzzTeL5ubmqOf55JNPxNKlS0VGRoYoLCwU3/ve94TP54s65u233xZz584VRqNRTJ48Oeo1xrpvfvObYsKECcJoNIpx48aJRYsWycFDCJ7DkTg/fPBcDu2WW24RpaWlwmg0ivHjx4tbbrlFHD9+XH6c53DkNEIIkZqaCxEREalR2vd8EBER0ejC8EFERESKYvggIiIiRTF8EBERkaIYPoiIiEhRDB9ERESkKIYPIiIiUhTDBxERESmK4YOIiIgUxfBBREREimL4ICIiIkUxfBAREZGi/h91wAU76ZgzpgAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(fits.open(a)[0].data[451])\n" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-19T18:13:26.723847Z", - "start_time": "2024-02-19T18:13:26.657137Z" - } - }, - "id": "9388883e00a96afe", - "execution_count": 102 - }, - { - "cell_type": "code", - "outputs": [], - "source": [], - "metadata": { - "collapsed": false - }, - "id": "95c7974ee167ffe6" - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}