-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_demo.py
129 lines (117 loc) · 7.69 KB
/
run_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os, argparse, time, datetime, sys, shutil, stat, torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import DataLoader
from util.MF_dataset import MF_dataset
from util.util import compute_results, visualize
from sklearn.metrics import confusion_matrix
from scipy.io import savemat
from model import SPSNet
#############################################################################################
parser = argparse.ArgumentParser(description='Test with pytorch')
#############################################################################################
parser.add_argument('--model_name', '-m', type=str, default='SPSNet')
parser.add_argument('--weight_name', '-w', type=str, default='SPSNet') # RTFNet_152, RTFNet_50, please change the number of layers in the network file
parser.add_argument('--file_name', '-f', type=str, default='final.pth')
parser.add_argument('--dataset_split', '-d', type=str, default='test') # test, test_day, test_night
parser.add_argument('--gpu', '-g', type=int, default=1)
#############################################################################################
parser.add_argument('--img_height', '-ih', type=int, default=480)
parser.add_argument('--img_width', '-iw', type=int, default=640)
parser.add_argument('--num_workers', '-j', type=int, default=16)
parser.add_argument('--n_class', '-nc', type=int, default=5)
parser.add_argument('--data_dir', '-dr', type=str, default='./dataset/')
parser.add_argument('--model_dir', '-wd', type=str, default='./weights_backup/')
args = parser.parse_args()
#############################################################################################
if __name__ == '__main__':
torch.cuda.set_device(args.gpu)
print("\nthe pytorch version:", torch.__version__)
print("the gpu count:", torch.cuda.device_count())
print("the current used gpu:", torch.cuda.current_device(), '\n')
# prepare save direcotry
if os.path.exists("./runs"):
print("previous \"./runs\" folder exist, will delete this folder")
shutil.rmtree("./runs")
os.makedirs("./runs")
os.chmod("./runs", stat.S_IRWXO) # allow the folder created by docker read, written, and execuated by local machine
model_dir = os.path.join(args.model_dir, args.weight_name)
if os.path.exists(model_dir) is False:
sys.exit("the %s does not exit." %(model_dir))
model_file = os.path.join(model_dir, args.file_name)
if os.path.exists(model_file) is True:
print('use the final model file.')
else:
sys.exit('no model file found.')
print('testing %s: %s on GPU #%d with pytorch' % (args.model_name, args.weight_name, args.gpu))
conf_total = np.zeros((args.n_class, args.n_class))
#model = DeepLabV3Plus(encoder_name="resnet101",classes=5,in_channels=3)
#model = eval(args.model_name)(encoder_name="resnet101",classes=args.n_class,in_channels=3)
model = eval(args.model_name)(n_class=args.n_class)
if args.gpu >= 0: model.cuda(args.gpu)
print('loading model file %s... ' % model_file)
pretrained_weight = torch.load(model_file, map_location = lambda storage, loc: storage.cuda(args.gpu))
own_state = model.state_dict()
for name, param in pretrained_weight.items():
if name not in own_state:
continue
own_state[name].copy_(param)
print('done!')
batch_size = 1
test_dataset = MF_dataset(data_dir=args.data_dir, split=args.dataset_split, input_h=args.img_height, input_w=args.img_width)
test_loader = DataLoader(
dataset = test_dataset,
batch_size = batch_size,
shuffle = False,
num_workers = args.num_workers,
pin_memory = True,
drop_last = False
)
ave_time_cost = 0.0
model.eval()
with torch.no_grad():
for it, (images, labels, names) in enumerate(test_loader):
images = Variable(images).cuda(args.gpu)
labels = Variable(labels).cuda(args.gpu)
start_time = time.time()
logits = model(images) # logits.size(): mini_batch*num_class*480*640
end_time = time.time()
if it>=5: # # ignore the first 5 frames
ave_time_cost += (end_time-start_time)
# convert tensor to numpy 1d array
label = labels.cpu().numpy().squeeze().flatten()
prediction = logits.argmax(1).cpu().numpy().squeeze().flatten() # prediction and label are both 1-d array, size: minibatch*640*480
# generate confusion matrix frame-by-frame
conf = confusion_matrix(y_true=label, y_pred=prediction, labels=[0,1,2,3,4]) # conf is an n_class*n_class matrix, vertical axis: groundtruth, horizontal axis: prediction
conf_total += conf
# save demo images
visualize(image_name=names, predictions=logits.argmax(1), weight_name=args.weight_name)
print("%s, %s, frame %d/%d, %s, time cost: %.2f ms, demo result saved."
%(args.model_name, args.weight_name, it+1, len(test_loader), names, (end_time-start_time)*1000))
precision_per_class, recall_per_class, iou_per_class,F1_per_class = compute_results(conf_total)
conf_total_matfile = os.path.join("./runs", 'conf_'+args.weight_name+'.mat')
savemat(conf_total_matfile, {'conf': conf_total}) # 'conf' is the variable name when loaded in Matlab
print('\n###########################################################################')
print('\n%s: %s test results (with batch size %d) on %s using %s:' %(args.model_name, args.weight_name, batch_size, datetime.date.today(), torch.cuda.get_device_name(args.gpu)))
print('\n* the tested dataset name: %s' % args.dataset_split)
print('* the tested image count: %d' % len(test_loader))
print('* the tested image size: %d*%d' %(args.img_height, args.img_width))
print('* the weight name: %s' %args.weight_name)
print('* the file name: %s' %args.file_name)
print("* recall per class: \n unlabeled: %.6f, sat: %.6f, fanban: %.6f, lidar: %.6f, penzui: %.6f" \
%(recall_per_class[0], recall_per_class[1], recall_per_class[2], recall_per_class[3], recall_per_class[4]))
print("* pre per class: \n unlabeled: %.6f, sat: %.6f, fanban: %.6f, lidar: %.6f, penzui: %.6f" \
%(precision_per_class[0], precision_per_class[1], precision_per_class[2], precision_per_class[3], precision_per_class[4]))
print("* F1 per class: \n unlabeled: %.6f, sat: %.6f, fanban: %.6f, lidar: %.6f, penzui: %.6f" \
%(F1_per_class[0], F1_per_class[1], F1_per_class[2], F1_per_class[3], F1_per_class[4]))
print("* iou per class: \n unlabeled: %.6f, sat: %.6f, fanban: %.6f, lidar: %.6f, penzui: %.6f" \
%(iou_per_class[0], iou_per_class[1], iou_per_class[2], iou_per_class[3], iou_per_class[4]))
print("\n* average values (np.mean(x)): \n recall: %.6f, pre: %.6f, F1: %.6f iou: %.6f" \
%(recall_per_class.mean(), precision_per_class.mean(), F1_per_class.mean(), iou_per_class.mean()))
print("* average values (np.mean(np.nan_to_num(x))): \n recall: %.6f, pre: %.6f, F1: %.6f iou: %.6f" \
%(np.mean(np.nan_to_num(recall_per_class)), np.mean(np.nan_to_num(precision_per_class)), np.mean(np.nan_to_num(F1_per_class)), np.mean(np.nan_to_num(iou_per_class))))
print('\n* the average time cost per frame (with batch size %d): %.2f ms, namely, the inference speed is %.2f fps' %(batch_size, ave_time_cost*1000/(len(test_loader)-5), 1.0/(ave_time_cost/(len(test_loader)-5)))) # ignore the first 10 frames
#print('\n* the total confusion matrix: ')
#np.set_printoptions(precision=8, threshold=np.inf, linewidth=np.inf, suppress=True)
#print(conf_total)
print('\n###########################################################################')