Skip to content

Latest commit

 

History

History
146 lines (108 loc) · 6.54 KB

README.md

File metadata and controls

146 lines (108 loc) · 6.54 KB

RGBX_Semantic_Segmentation

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

PWC

Example segmentation

The official implementation of CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers: More details can be found in our paper [PDF].

Usage

Installation

  1. Requirements
  • Python 3.7+
  • PyTorch 1.7.0 or higher
  • CUDA 10.2 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 18.04.6 LTS
  • CUDA: 10.2
  • PyTorch 1.8.2
  • Python 3.8.11
  1. Install all dependencies. Install pytorch, cuda and cudnn, then install other dependencies via:
pip install -r requirements.txt

Datasets

Orgnize the dataset folder in the following structure:

<datasets>
|-- <DatasetName1>
    |-- <RGBFolder>
        |-- <name1>.<ImageFormat>
        |-- <name2>.<ImageFormat>
        ...
    |-- <ModalXFolder>
        |-- <name1>.<ModalXFormat>
        |-- <name2>.<ModalXFormat>
        ...
    |-- <LabelFolder>
        |-- <name1>.<LabelFormat>
        |-- <name2>.<LabelFormat>
        ...
    |-- train.txt
    |-- test.txt
|-- <DatasetName2>
|-- ...

train.txt contains the names of items in training set, e.g.:

<name1>
<name2>
...

For RGB-Depth semantic segmentation, the generation of HHA maps from Depth maps can refer to https://github.com/charlesCXK/Depth2HHA-python.

Train

  1. Pretrain weights:

    Download the pretrained segformer here pretrained segformer.

  2. Config

    Edit config file in configs.py, including dataset and network settings.

  3. Run multi GPU distributed training:

    $ CUDA_VISIBLE_DEVICES="GPU IDs" python -m torch.distributed.launch --nproc_per_node="GPU numbers you want to use" train.py
  • The tensorboard file is saved in log_<datasetName>_<backboneSize>/tb/ directory.
  • Checkpoints are stored in log_<datasetName>_<backboneSize>/checkpoints/ directory.

Evaluation

Run the evaluation by:

CUDA_VISIBLE_DEVICES="GPU IDs" python eval.py -d="Device ID" -e="epoch number or range"

If you want to use multi GPUs please specify multiple Device IDs (0,1,2...).

Result

We offer the pre-trained weights on different RGBX datasets (Some weights are not avaiable yet, Due to the difference of training platforms, these weights may not be correctly loaded.):

NYU-V2(40 categories)

Architecture Backbone mIOU(SS) mIOU(MS & Flip) Weight
CMX (SegFormer) MiT-B2 54.1% 54.4% NYU-MiT-B2
CMX (SegFormer) MiT-B4 56.0% 56.3%
CMX (SegFormer) MiT-B5 56.8% 56.9%

MFNet(9 categories)

Architecture Backbone mIOU Weight
CMX (SegFormer) MiT-B2 58.2% MFNet-MiT-B2
CMX (SegFormer) MiT-B4 59.7%

ScanNet-V2(20 categories)

Architecture Backbone mIOU Weight
CMX (SegFormer) MiT-B2 61.3% ScanNet-MiT-B2

RGB-Event(20 categories)

Architecture Backbone mIOU Weight
CMX (SegFormer) MiT-B4 64.28% RGBE-MiT-B4

Publication

If you find this repo useful, please consider referencing the following paper:

@article{liu2022cmx,
  title={CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers},
  author={Liu, Huayao and Zhang, Jiaming and Yang, Kailun and Hu, Xinxin and Stiefelhagen, Rainer},
  journal={arXiv preprint arXiv:2203.04838},
  year={2022}
}

Acknowledgement

Our code is heavily based on TorchSeg and SA-Gate, thanks for their excellent work!