-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patheval_CD.py
113 lines (96 loc) · 3.52 KB
/
eval_CD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import numpy as np
from skimage import io, measure
from scipy import stats
from utils.metric_tool import get_mIoU
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.initialized = False
self.TP = None
self.TN = None
self.FP = None
self.FN = None
self.count = None
def initialize(self, TP, TN, FP, FN):
self.TP = float(TP)
self.TN = float(TN)
self.FP = float(FP)
self.FN = float(FN)
self.count = 1
self.initialized = True
def update(self, TP, TN, FP, FN):
if not self.initialized:
self.initialize(TP, TN, FP, FN)
else:
self.add(TP, TN, FP, FN)
def add(self, TP, TN, FP, FN):
self.TP += float(TP)
self.TN += float(TN)
self.FP += float(FP)
self.FN += float(FN)
self.count += 1
def val(self):
return self.TP, self.TN, self.FP, self.FN
def align_dims(np_input, expected_dims=2):
dim_input = len(np_input.shape)
np_output = np_input
if dim_input>expected_dims:
np_output = np_input.squeeze(0)
elif dim_input<expected_dims:
np_output = np.expand_dims(np_input, 0)
assert len(np_output.shape) == expected_dims
return np_output
def index2int(pred):
pred = pred*255
pred = np.asarray(pred, dtype='uint8')
return pred
def calc_TP(pred, label):
pred = align_dims(pred, 2)
label = align_dims(label, 2)
pred = (pred>= 0.5)
label = (label>= 0.5)
GT = (label).sum()
TP = (pred * label).sum()
FP = (pred * (~label)).sum()
FN = ((~pred) * (label)).sum()
TN = ((~pred) * (~label)).sum()
return TP, TN, FP, FN
if __name__ == '__main__':
GT_dir = '/.../levir_CD/label/'
pred_dir = '/.../SAM_CD/eval/Levir_CD/SAM_CD/'
info_txt_path = os.path.join(pred_dir, 'info.txt')
f = open(info_txt_path, 'w+')
acc_meter = AverageMeter()
data_list = os.listdir(pred_dir)
num_valid = 0
for idx, it in enumerate(data_list):
if it[-4:]=='.png' or it[-4:]=='.jpg': num_valid+=1
preds = []
GTs = []
for idx, it in enumerate(data_list):
if it[-4:]=='.png' or it[-4:]=='.jpg':
pred_path = os.path.join(pred_dir, it)
pred = io.imread(pred_path)
h,w = pred.shape[:2]
#pred = pred[:,:,0]/255.0
GT_path = os.path.join(GT_dir, it[:-4]+'.png')
GT = io.imread(GT_path)
pred = pred//255 #pred.clip(max=1)
GT = GT//255 #.clip(max=1)
preds.append(pred)
GTs.append(GT)
TP, TN, FP, FN = calc_TP(pred, GT[:h,:w])
acc_meter.update(TP, TN, FP, FN)
if not idx%10: print('Eval idx %d/%d processed.'%(idx, num_valid))
TP, TN, FP, FN = acc_meter.val()
precision = TP / (TP+FP+1e-10)
recall = TP / (TP+FN+1e-10)
IoU0 = TP / (FP+TP+FN+1e-10)
IoU1 = TN / (FP+TN+FN+1e-10)
mIoU = (IoU0+IoU1)/2
acc = (TP+TN) / (TP+FP+FN+TN+1e-10)
F1 = stats.hmean([precision, recall])
print('Eval results: Acc %.2f, precision %.2f, recall %.2f, F1 %.2f, mIoU %.2f.'%(acc*100, precision*100, recall*100, F1*100, mIoU*100))
#Below are the evaluation metrics provided in CTD-Former (https://ieeexplore.ieee.org/document/10139838).
mIoU = get_mIoU(2, GTs, preds)