-
Notifications
You must be signed in to change notification settings - Fork 0
/
dma.c
850 lines (750 loc) · 22.8 KB
/
dma.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*
* -------------------------------------------
* MSP432 DriverLib - v3_21_00_05
* -------------------------------------------
*
* --COPYRIGHT--,BSD,BSD
* Copyright (c) 2016, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
#include <stdint.h>
#include <debug.h>
#include <interrupt.h>
#include <dma.h>
void DMA_enableModule(void)
{
//
// Set the master enable bit in the config register.
//
DMA_Control->CFG = DMA_CFG_MASTEN;
}
void DMA_disableModule(void)
{
//
// Clear the master enable bit in the config register.
//
DMA_Control->CFG = 0;
}
uint32_t DMA_getErrorStatus(void)
{
//
// Return the DMA error status.
//
return DMA_Control->ERRCLR;
}
void DMA_clearErrorStatus(void)
{
//
// Clear the DMA error interrupt.
//
DMA_Control->ERRCLR = 1;
}
void DMA_enableChannel(uint32_t channelNum)
{
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
//
// Set the bit for this channel in the enable set register.
//
DMA_Control->ENASET = 1 << (channelNum & 0x0F);
}
void DMA_disableChannel(uint32_t channelNum)
{
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
//
// Set the bit for this channel in the enable clear register.
//
DMA_Control->ENACLR = 1 << (channelNum & 0x0F);
}
bool DMA_isChannelEnabled(uint32_t channelNum)
{
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
//
// AND the specified channel bit with the enable register and return the
// result.
//
return ((DMA_Control->ENASET & (1 << (channelNum & 0x0F))) ? true : false);
}
void DMA_setControlBase(void *controlTable)
{
//
// Check the arguments.
//
ASSERT(((uint32_t) controlTable & ~0x3FF) == (uint32_t) controlTable);
ASSERT((uint32_t) controlTable >= 0x20000000);
//
// Program the base address into the register.
//
DMA_Control->CTLBASE = (uint32_t) controlTable;
}
void* DMA_getControlBase(void)
{
//
// Read the current value of the control base register and return it to
// the caller.
//
return ((void *) DMA_Control->CTLBASE);
}
void* DMA_getControlAlternateBase(void)
{
//
// Read the current value of the control base register and return it to
// the caller.
//
return ((void *) DMA_Control->ATLBASE);
}
void DMA_requestChannel(uint32_t channelNum)
{
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
//
// Set the bit for this channel in the software DMA request register.
//
DMA_Control->SWREQ = 1 << (channelNum & 0x0F);
}
void DMA_enableChannelAttribute(uint32_t channelNum, uint32_t attr)
{
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
ASSERT(
(attr
& ~(UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT
| UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK))
== 0);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelNum parameter, extract just the channel number
// from this parameter.
//
channelNum &= 0x0F;
//
// Set the useburst bit for this channel if set in config.
//
if (attr & UDMA_ATTR_USEBURST)
{
DMA_Control->USEBURSTSET = 1 << channelNum;
}
//
// Set the alternate control select bit for this channel,
// if set in config.
//
if (attr & UDMA_ATTR_ALTSELECT)
{
DMA_Control->ALTSET = 1 << channelNum;
}
//
// Set the high priority bit for this channel, if set in config.
//
if (attr & UDMA_ATTR_HIGH_PRIORITY)
{
DMA_Control->PRIOSET = 1 << channelNum;
}
//
// Set the request mask bit for this channel, if set in config.
//
if (attr & UDMA_ATTR_REQMASK)
{
DMA_Control->REQMASKSET = 1 << channelNum;
}
}
void DMA_disableChannelAttribute(uint32_t channelNum, uint32_t attr)
{
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
ASSERT(
(attr
& ~(UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT
| UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK))
== 0);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelNum parameter, extract just the channel number
// from this parameter.
//
channelNum &= 0x0F;
//
// Clear the useburst bit for this channel if set in config.
//
if (attr & UDMA_ATTR_USEBURST)
{
DMA_Control->USEBURSTCLR = 1 << channelNum;
}
//
// Clear the alternate control select bit for this channel, if set in
// config.
//
if (attr & UDMA_ATTR_ALTSELECT)
{
DMA_Control->ALTCLR = 1 << channelNum;
}
//
// Clear the high priority bit for this channel, if set in config.
//
if (attr & UDMA_ATTR_HIGH_PRIORITY)
{
DMA_Control->PRIOCLR = 1 << channelNum;
}
//
// Clear the request mask bit for this channel, if set in config.
//
if (attr & UDMA_ATTR_REQMASK)
{
DMA_Control->REQMASKCLR = 1 << channelNum;
}
}
uint32_t DMA_getChannelAttribute(uint32_t channelNum)
{
uint32_t attr = 0;
//
// Check the arguments.
//
ASSERT((channelNum & 0xffff) < 8);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelNum parameter, extract just the channel number
// from this parameter.
//
channelNum &= 0x0F;
//
// Check to see if useburst bit is set for this channel.
//
if (DMA_Control->USEBURSTSET & (1 << channelNum))
{
attr |= UDMA_ATTR_USEBURST;
}
//
// Check to see if the alternate control bit is set for this channel.
//
if (DMA_Control->ALTSET & (1 << channelNum))
{
attr |= UDMA_ATTR_ALTSELECT;
}
//
// Check to see if the high priority bit is set for this channel.
//
if (DMA_Control->PRIOSET & (1 << channelNum))
{
attr |= UDMA_ATTR_HIGH_PRIORITY;
}
//
// Check to see if the request mask bit is set for this channel.
//
if (DMA_Control->REQMASKSET & (1 << channelNum))
{
attr |= UDMA_ATTR_REQMASK;
}
//
// Return the configuration flags.
//
return (attr);
}
void DMA_setChannelControl(uint32_t channelStructIndex, uint32_t control)
{
DMA_ControlTable *pCtl;
//
// Check the arguments.
//
ASSERT((channelStructIndex & 0xffff) < 64);
ASSERT(DMA_Control->CTLBASE != 0);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelStructIndex parameter, extract just the channel
// index from this parameter.
//
channelStructIndex &= 0x3f;
//
// Get the base address of the control table.
//
pCtl = (DMA_ControlTable *) DMA_Control->CTLBASE;
//
// Get the current control word value and mask off the fields to be
// changed, then OR in the new settings.
//
pCtl[channelStructIndex].control = ((pCtl[channelStructIndex].control
& ~(UDMA_CHCTL_DSTINC_M | UDMA_CHCTL_DSTSIZE_M | UDMA_CHCTL_SRCINC_M
| UDMA_CHCTL_SRCSIZE_M | UDMA_CHCTL_ARBSIZE_M
| UDMA_CHCTL_NXTUSEBURST)) | control);
}
void DMA_setChannelTransfer(uint32_t channelStructIndex, uint32_t mode,
void *srcAddr, void *dstAddr, uint32_t transferSize)
{
DMA_ControlTable *controlTable;
uint32_t control;
uint32_t increment;
uint32_t bufferBytes;
//
// Check the arguments.
//
ASSERT((channelStructIndex & 0xffff) < 64);
ASSERT(DMA->CTLBASE != 0);
ASSERT(mode <= UDMA_MODE_PER_SCATTER_GATHER);
ASSERT((transferSize != 0) && (transferSize <= 1024));
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelStructIndex parameter, extract just the channel
// index from this parameter.
//
channelStructIndex &= 0x3f;
//
// Get the base address of the control table.
//
controlTable = (DMA_ControlTable *) DMA_Control->CTLBASE;
//
// Get the current control word value and mask off the mode and size
// fields.
//
control = (controlTable[channelStructIndex].control
& ~(UDMA_CHCTL_XFERSIZE_M | UDMA_CHCTL_XFERMODE_M));
//
// Adjust the mode if the alt control structure is selected.
//
if (channelStructIndex & UDMA_ALT_SELECT)
{
if ((mode == UDMA_MODE_MEM_SCATTER_GATHER)
|| (mode == UDMA_MODE_PER_SCATTER_GATHER))
{
mode |= UDMA_MODE_ALT_SELECT;
}
}
//
// Set the transfer size and mode in the control word (but don't write the
// control word yet as it could kick off a transfer).
//
control |= mode | ((transferSize - 1) << 4);
//
// Get the address increment value for the source, from the control word.
//
increment = (control & UDMA_CHCTL_SRCINC_M);
//
// Compute the ending source address of the transfer. If the source
// increment is set to none, then the ending address is the same as the
// beginning.
//
if (increment != UDMA_SRC_INC_NONE)
{
increment = increment >> 26;
bufferBytes = transferSize << increment;
srcAddr = (void *) ((uint32_t) srcAddr + bufferBytes - 1);
}
//
// Load the source ending address into the control block.
//
controlTable[channelStructIndex].srcEndAddr = srcAddr;
//
// Get the address increment value for the destination, from the control
// word.
//
increment = control & UDMA_CHCTL_DSTINC_M;
//
// Compute the ending destination address of the transfer. If the
// destination increment is set to none, then the ending address is the
// same as the beginning.
//
if (increment != UDMA_DST_INC_NONE)
{
//
// There is a special case if this is setting up a scatter-gather
// transfer. The destination pointer must point to the end of
// the alternate structure for this channel instead of calculating
// the end of the buffer in the normal way.
//
if ((mode == UDMA_MODE_MEM_SCATTER_GATHER)
|| (mode == UDMA_MODE_PER_SCATTER_GATHER))
{
dstAddr = (void *) &controlTable[channelStructIndex
| UDMA_ALT_SELECT].spare;
}
//
// Not a scatter-gather transfer, calculate end pointer normally.
//
else
{
increment = increment >> 30;
bufferBytes = transferSize << increment;
dstAddr = (void *) ((uint32_t) dstAddr + bufferBytes - 1);
}
}
//
// Load the destination ending address into the control block.
//
controlTable[channelStructIndex].dstEndAddr = dstAddr;
//
// Write the new control word value.
//
controlTable[channelStructIndex].control = control;
}
void DMA_setChannelScatterGather(uint32_t channelNum, uint32_t taskCount,
void *taskList, uint32_t isPeriphSG)
{
DMA_ControlTable *controlTable;
DMA_ControlTable *pTaskTable;
//
// Check the parameters
//
ASSERT((channelNum & 0xffff) < 8);
ASSERT(DMA->CTLBASE != 0);
ASSERT(taskList != 0);
ASSERT(taskCount <= 1024);
ASSERT(taskCount != 0);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelNum parameter, extract just the channel number
// from this parameter.
//
channelNum &= 0x0F;
//
// Get the base address of the control table.
//
controlTable = (DMA_ControlTable *) DMA_Control->CTLBASE;
//
// Get a handy pointer to the task list
//
pTaskTable = (DMA_ControlTable *) taskList;
//
// Compute the ending address for the source pointer. This address is the
// last element of the last task in the task table
//
controlTable[channelNum].srcEndAddr = &pTaskTable[taskCount - 1].spare;
//
// Compute the ending address for the destination pointer. This address
// is the end of the alternate structure for this channel.
//
controlTable[channelNum].dstEndAddr = &controlTable[channelNum
| UDMA_ALT_SELECT].spare;
//
// Compute the control word. Most configurable items are fixed for
// scatter-gather. Item and increment sizes are all 32-bit and arb
// size must be 4. The count is the number of items in the task list
// times 4 (4 words per task).
//
controlTable[channelNum].control = (UDMA_CHCTL_DSTINC_32
| UDMA_CHCTL_DSTSIZE_32 | UDMA_CHCTL_SRCINC_32
| UDMA_CHCTL_SRCSIZE_32 | UDMA_CHCTL_ARBSIZE_4
| (((taskCount * 4) - 1) << UDMA_CHCTL_XFERSIZE_S)
| (isPeriphSG ?
UDMA_CHCTL_XFERMODE_PER_SG :
UDMA_CHCTL_XFERMODE_MEM_SG));
//
// Scatter-gather operations can leave the alt bit set. So if doing
// back to back scatter-gather transfers, the second attempt may not
// work correctly because the alt bit is set. Therefore, clear the
// alt bit here to ensure that it is always cleared before a new SG
// transfer is started.
//
DMA_Control->ALTCLR = 1 << channelNum;
}
uint32_t DMA_getChannelSize(uint32_t channelStructIndex)
{
DMA_ControlTable *controlTable;
uint32_t control;
//
// Check the arguments.
//
ASSERT((channelStructIndex & 0xffff) < 16);
ASSERT(DMA->CTLBASE != 0);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelStructIndex parameter, extract just the channel
// index from this parameter.
//
channelStructIndex &= 0x3f;
//
// Get the base address of the control table.
//
controlTable = (DMA_ControlTable *) DMA_Control->CTLBASE;
//
// Get the current control word value and mask off all but the size field
// and the mode field.
//
control = (controlTable[channelStructIndex].control
& (UDMA_CHCTL_XFERSIZE_M | UDMA_CHCTL_XFERMODE_M));
//
// If the size field and mode field are 0 then the transfer is finished
// and there are no more items to transfer
//
if (control == 0)
{
return (0);
}
//
// Otherwise, if either the size field or more field is non-zero, then
// not all the items have been transferred.
//
else
{
//
// Shift the size field and add one, then return to user.
//
return ((control >> 4) + 1);
}
}
uint32_t DMA_getChannelMode(uint32_t channelStructIndex)
{
DMA_ControlTable *controlTable;
uint32_t control;
//
// Check the arguments.
//
ASSERT((channelStructIndex & 0xffff) < 64);
ASSERT(DMA->CTLBASE != 0);
//
// In case a channel selector macro (like UDMA_CH0_USB0EP1RX) was
// passed as the channelStructIndex parameter, extract just the channel
// index from this parameter.
//
channelStructIndex &= 0x3f;
//
// Get the base address of the control table.
//
controlTable = (DMA_ControlTable *) DMA_Control->CTLBASE;
//
// Get the current control word value and mask off all but the mode field.
//
control =
(controlTable[channelStructIndex].control & UDMA_CHCTL_XFERMODE_M);
//
// Check if scatter/gather mode, and if so, mask off the alt bit.
//
if (((control & ~UDMA_MODE_ALT_SELECT) == UDMA_MODE_MEM_SCATTER_GATHER)
|| ((control & ~UDMA_MODE_ALT_SELECT)
== UDMA_MODE_PER_SCATTER_GATHER))
{
control &= ~UDMA_MODE_ALT_SELECT;
}
//
// Return the mode to the caller.
//
return (control);
}
void DMA_assignChannel(uint32_t mapping)
{
switch (mapping)
{
case DMA_CH0_RESERVED0:
case DMA_CH0_EUSCIA0TX:
case DMA_CH0_EUSCIB0TX0:
case DMA_CH0_EUSCIB3TX1:
case DMA_CH0_EUSCIB2TX2:
case DMA_CH0_EUSCIB1TX3:
case DMA_CH0_TIMERA0CCR0:
case DMA_CH0_AESTRIGGER0:
DMA_Channel->CH_SRCCFG[0] = (mapping >> 24) & 0x1F;
break;
case DMA_CH1_RESERVED0:
case DMA_CH1_EUSCIA0RX:
case DMA_CH1_EUSCIB0RX0:
case DMA_CH1_EUSCIB3RX1:
case DMA_CH1_EUSCIB2RX2:
case DMA_CH1_EUSCIB1RX3:
case DMA_CH1_TIMERA0CCR2:
case DMA_CH1_AESTRIGGER1:
DMA_Channel->CH_SRCCFG[1] = (mapping >> 24) & 0x1F;
break;
case DMA_CH2_RESERVED0:
case DMA_CH2_EUSCIA1TX:
case DMA_CH2_EUSCIB1TX0:
case DMA_CH2_EUSCIB0TX1:
case DMA_CH2_EUSCIB3TX2:
case DMA_CH2_EUSCIB2TX3:
case DMA_CH2_TIMERA1CCR0:
case DMA_CH2_AESTRIGGER2:
DMA_Channel->CH_SRCCFG[2] = (mapping >> 24) & 0x1F;
break;
case DMA_CH3_RESERVED0:
case DMA_CH3_EUSCIA1RX:
case DMA_CH3_EUSCIB1RX0:
case DMA_CH3_EUSCIB0RX1:
case DMA_CH3_EUSCIB3RX2:
case DMA_CH3_EUSCIB2RX3:
case DMA_CH3_TIMERA1CCR2:
case DMA_CH3_RESERVED1:
DMA_Channel->CH_SRCCFG[3] = (mapping >> 24) & 0x1F;
break;
case DMA_CH4_RESERVED0:
case DMA_CH4_EUSCIA2TX:
case DMA_CH4_EUSCIB2TX0:
case DMA_CH4_EUSCIB1TX1:
case DMA_CH4_EUSCIB0TX2:
case DMA_CH4_EUSCIB3TX3:
case DMA_CH4_TIMERA2CCR0:
case DMA_CH4_RESERVED1:
DMA_Channel->CH_SRCCFG[4] = (mapping >> 24) & 0x1F;
break;
case DMA_CH5_RESERVED0:
case DMA_CH5_EUSCIA2RX:
case DMA_CH5_EUSCIB2RX0:
case DMA_CH5_EUSCIB1RX1:
case DMA_CH5_EUSCIB0RX2:
case DMA_CH5_EUSCIB3RX3:
case DMA_CH5_TIMERA2CCR2:
case DMA_CH5_RESERVED1:
DMA_Channel->CH_SRCCFG[5] = (mapping >> 24) & 0x1F;
break;
case DMA_CH6_RESERVED0:
case DMA_CH6_EUSCIA3TX:
case DMA_CH6_EUSCIB3TX0:
case DMA_CH6_EUSCIB2TX1:
case DMA_CH6_EUSCIB1TX2:
case DMA_CH6_EUSCIB0TX3:
case DMA_CH6_TIMERA3CCR0:
case DMA_CH6_EXTERNALPIN:
DMA_Channel->CH_SRCCFG[6] = (mapping >> 24) & 0x1F;
break;
case DMA_CH7_RESERVED0:
case DMA_CH7_EUSCIA3RX:
case DMA_CH7_EUSCIB3RX0:
case DMA_CH7_EUSCIB2RX1:
case DMA_CH7_EUSCIB1RX2:
case DMA_CH7_EUSCIB0RX3:
case DMA_CH7_TIMERA3CCR2:
case DMA_CH7_ADC14:
DMA_Channel->CH_SRCCFG[7] = (mapping >> 24) & 0x1F;
break;
default:
ASSERT(false);
}
}
void DMA_assignInterrupt(uint32_t interruptNumber, uint32_t channel)
{
ASSERT(
interruptNumber == DMA_INT1 || interruptNumber == DMA_INT2
|| interruptNumber == DMA_INT3);
if (interruptNumber == DMA_INT1)
{
DMA_Channel->INT1_SRCCFG = (DMA_Channel->INT1_SRCCFG
& ~DMA_INT1_SRCCFG_INT_SRC_MASK) | channel;
} else if (interruptNumber == DMA_INT2)
{
DMA_Channel->INT2_SRCCFG = (DMA_Channel->INT2_SRCCFG
& ~DMA_INT1_SRCCFG_INT_SRC_MASK) | channel;
} else if (interruptNumber == DMA_INT3)
{
DMA_Channel->INT3_SRCCFG = (DMA_Channel->INT3_SRCCFG
& ~DMA_INT1_SRCCFG_INT_SRC_MASK) | channel;
}
/* Enabling the assigned interrupt */
DMA_enableInterrupt(interruptNumber);
}
void DMA_requestSoftwareTransfer(uint32_t channel)
{
DMA_Channel->SW_CHTRIG |= (1 << channel);
}
uint32_t DMA_getInterruptStatus(void)
{
return DMA_Channel->INT0_SRCFLG;
}
void DMA_clearInterruptFlag(uint32_t channel)
{
DMA_Channel->INT0_CLRFLG |= (1 << channel);
}
void DMA_enableInterrupt(uint32_t interruptNumber)
{
ASSERT(
(interruptNumber == DMA_INT0) || (interruptNumber == DMA_INT1)
|| (interruptNumber == DMA_INT2)
|| (interruptNumber == DMA_INT3));
if (interruptNumber == DMA_INT1)
{
DMA_Channel->INT1_SRCCFG |= DMA_INT1_SRCCFG_EN;
} else if (interruptNumber == DMA_INT2)
{
DMA_Channel->INT2_SRCCFG |= DMA_INT2_SRCCFG_EN;
} else if (interruptNumber == DMA_INT3)
{
DMA_Channel->INT3_SRCCFG |= DMA_INT3_SRCCFG_EN;
}
}
void DMA_disableInterrupt(uint32_t interruptNumber)
{
ASSERT(
(interruptNumber == DMA_INT0) || (interruptNumber == DMA_INT1)
|| (interruptNumber == DMA_INT2)
|| (interruptNumber == DMA_INT3));
if (interruptNumber == DMA_INT1)
{
DMA_Channel->INT1_SRCCFG &= ~DMA_INT1_SRCCFG_EN;
} else if (interruptNumber == DMA_INT2)
{
DMA_Channel->INT2_SRCCFG &= ~DMA_INT2_SRCCFG_EN;
} else if (interruptNumber == DMA_INT3)
{
DMA_Channel->INT3_SRCCFG &= ~DMA_INT3_SRCCFG_EN;
}
}
void DMA_registerInterrupt(uint32_t interruptNumber, void (*intHandler)(void))
{
//
// Check the arguments.
//
ASSERT(intHandler);
ASSERT(
(interruptNumber == DMA_INT0) || (interruptNumber == DMA_INT1)
|| (interruptNumber == DMA_INT2)
|| (interruptNumber == DMA_INT3)
|| (interruptNumber == DMA_INTERR));
//
// Register the interrupt handler.
//
Interrupt_registerInterrupt(interruptNumber, intHandler);
//
// Enable the memory management fault.
//
Interrupt_enableInterrupt(interruptNumber);
}
void DMA_unregisterInterrupt(uint32_t interruptNumber)
{
ASSERT(
(interruptNumber == DMA_INT0) || (interruptNumber == DMA_INT1)
|| (interruptNumber == DMA_INT2)
|| (interruptNumber == DMA_INT3)
|| (interruptNumber == DMA_INTERR));
//
// Disable the interrupt.
//
Interrupt_disableInterrupt(interruptNumber);
//
// Unregister the interrupt handler.
//
Interrupt_unregisterInterrupt(interruptNumber);
}