-
Notifications
You must be signed in to change notification settings - Fork 8
/
README.md
100 lines (90 loc) · 3.6 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# FPN
```
Pytorch Implementation of "Feature Pyramid Networks for Object Detection"
You can star this repository to keep track of the project if it's helpful for you, thank you for your support.
```
# Environment
```
OS: Ubuntu 16.04
Python: python3.x with torch==1.2.0, torchvision==0.4.0
```
# Performance
| Backbone | Train | Test | Pretrained Model | Epochs | Learning Rate | RoI per image | AP |
| :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: |
| Res50-FPN | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | [35.5](docs/Res50FPN_pytorch_epoch12.MD) |
| Res101-FPN | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | [37.4](docs/Res101FPN_pytorch_epoch12.MD) |
# Trained models
```
You could get the trained models reported above at
https://drive.google.com/open?id=1xm8z-EMbNG17sQzd-2FRRLVk_N7UIOhE
```
# Usage
#### Setup
```
cd libs
sh make.sh
```
#### Train
```
usage: train.py [-h] --datasetname DATASETNAME --backbonename BACKBONENAME
[--checkpointspath CHECKPOINTSPATH]
optional arguments:
-h, --help show this help message and exit
--datasetname DATASETNAME
dataset for training.
--backbonename BACKBONENAME
backbone network for training.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
cmd example:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --datasetname coco --backbonename resnet50
```
#### Test
```
usage: test.py [-h] --datasetname DATASETNAME [--annfilepath ANNFILEPATH]
[--datasettype DATASETTYPE] --backbonename BACKBONENAME
--checkpointspath CHECKPOINTSPATH [--nmsthresh NMSTHRESH]
optional arguments:
-h, --help show this help message and exit
--datasetname DATASETNAME
dataset for testing.
--annfilepath ANNFILEPATH
used to specify annfilepath.
--datasettype DATASETTYPE
used to specify datasettype.
--backbonename BACKBONENAME
backbone network for testing.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
--nmsthresh NMSTHRESH
thresh used in nms.
cmd example:
CUDA_VISIBLE_DEVICES=0 python test.py --checkpointspath fpn_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50
```
#### Demo
```
usage: demo.py [-h] --imagepath IMAGEPATH --backbonename BACKBONENAME
--datasetname DATASETNAME --checkpointspath CHECKPOINTSPATH
[--nmsthresh NMSTHRESH] [--confthresh CONFTHRESH]
optional arguments:
-h, --help show this help message and exit
--imagepath IMAGEPATH
image you want to detect.
--backbonename BACKBONENAME
backbone network for demo.
--datasetname DATASETNAME
dataset used to train.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
--nmsthresh NMSTHRESH
thresh used in nms.
--confthresh CONFTHRESH
thresh used in showing bounding box.
cmd example:
CUDA_VISIBLE_DEVICES=0 python demo.py --checkpointspath fpn_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50 --imagepath 000001.jpg
```
# Reference
```
[1]. https://github.com/jwyang/fpn.pytorch
[2]. https://github.com/open-mmlab/mmdetection
```