From 402649c25ffcb78abd2d2c4d9faba8e66d9110d9 Mon Sep 17 00:00:00 2001 From: deer-warlord Date: Thu, 17 Jan 2019 11:30:24 +0200 Subject: [PATCH] phase2 init vector testing 100% complete --- test4.py | 38 +++++++- test5.py | 284 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 318 insertions(+), 4 deletions(-) create mode 100644 test5.py diff --git a/test4.py b/test4.py index 63d4f29..c62c4f3 100644 --- a/test4.py +++ b/test4.py @@ -84,7 +84,7 @@ def init_equation_system(self): for i in range(0, 3): self.EQ["I_{i}_{N}".format(N=j, i=i)] = self.EQ["st_old_{i}_{N}".format(N=j, i=i)] * \ - self.EQ["X_old_1_{N}".format(N=j, i=i)] + self.EQ["X_old_1_{pN}".format(pN=j-1, i=i)] self.COND["invest_{N}".format(N=j)] = sum([self.EQ["su_old_{i}_{N}".format(N=j, i=i)] + self.EQ["st_old_{i}_{N}".format(N=j, i=i)] for i in @@ -94,13 +94,27 @@ def init_equation_system(self): sum([self.EQ["X_old_{i}_{N}".format(N=j, i=i)] * self.EQ["a_{i}".format(i=i)] for i in range(0, 3)])) / \ self.EQ["L_{N}".format(N=j, i=i)] + # self.results[0] = { + # self.EQ["su_old_0_1"]: 0.45, + # self.EQ["su_old_1_1"]: 0.23, + # self.EQ["su_old_2_1"]: 0.11, + # self.EQ["su_old_0_2"]: 0.47, + # self.EQ["su_old_1_2"]: 0.27, + # self.EQ["su_old_2_2"]: 0.06, + # self.EQ["su_old_0_3"]: 0.53, + # self.EQ["su_old_1_3"]: 0.15, + # self.EQ["su_old_2_3"]: 0.12, + # self.EQ["su_old_0_4"]: 0.52, + # self.EQ["su_old_1_4"]: 0.28, + # self.EQ["su_old_2_4"]: 0.0, + # } for j in range(1, tau): s = None consumption = lambdify(self.EQ["su_old_2_{N}".format(N=j)], self.EQ["X_old_2_{N}".format(N=j)]) balance = lambdify([self.EQ["su_old_{i}_{N}".format(N=j, i=i)] for i in range(0, 3)], self.COND["balance_{N}".format(N=j)]) - for S_phase_1 in self.generate_s(self.ds, 0.8): + for S_phase_1 in self.generate_s(self.ds, 0.9): if consumption(S_phase_1[2]) >= self.C and balance(*S_phase_1) <= 1: s = S_phase_1 break @@ -127,6 +141,7 @@ def init_equation_system(self): self.EQ["X_new_1_{pN}".format(pN=tau - 1)] = 0.0 for j in range(tau, self.N): + print(strftime("%H:%M:%S", gmtime()), "st_new K_new", j) for i in range(0, 3): self.EQ["st_new_{i}_{N}".format(N=j, i=i)] = symbols("st_new_{i}_{N}".format(N=j, i=i), negative=False) @@ -149,6 +164,8 @@ def init_equation_system(self): self.EQ["L_new_{i}_{N}".format(N=j, i=i)] = Min(self.EQ["L_new_v1_{i}_{N}".format(N=j, i=i)], self.EQ["L_new_v2_{i}_{N}".format(N=j, i=i)]) + print(strftime("%H:%M:%S", gmtime()), "L_new", j) + for i in range(0, 3): self.EQ["theta_new_{i}_{N}".format(N=j, i=i)] = self.EQ["L_new_{i}_{N}".format(N=j, i=i)] / \ self.EQ["L_{N}".format(N=j, i=i)] @@ -159,6 +176,8 @@ def init_equation_system(self): self.EQ["K_new_{i}_{N}".format(N=j, i=i)] ** \ self.EQ["betta_new_{i}".format(i=i)] + print(strftime("%H:%M:%S", gmtime()), "theta_new X_new", j) + for i in range(0, 3): self.EQ["theta_old_{i}_{N}".format(i=i, N=j)] = self.EQ["theta_old_{i}_{pN}".format(i=i, pN=j - 1)] - \ self.EQ["theta_new_{i}_{N}".format(N=j, i=i)] @@ -166,6 +185,8 @@ def init_equation_system(self): self.EQ["L_old_{i}_{N}".format(N=j, i=i)] = self.EQ["theta_old_{i}_{N}".format(i=i, N=j)] * \ self.EQ["L_{N}".format(N=j, i=i)] + print(strftime("%H:%M:%S", gmtime()), "theta_old L_old", j) + for i in range(0, 3): self.EQ["su_old_{i}_{N}".format(N=j, i=i)] = symbols("su_old_{i}_{N}".format(N=j, i=i)) self.EQ["K_old_{i}_{N}".format(N=j, i=i)] = (-self.EQ["mu_{i}".format(i=i)] * @@ -174,6 +195,8 @@ def init_equation_system(self): self.EQ["X_old_1_{pN}".format(pN=j - 1, i=i)]) * dt + \ self.EQ["K_old_{i}_{pN}".format(pN=j - 1, i=i)] + print(strftime("%H:%M:%S", gmtime()), "su_old K_old", j) + for i in range(0, 3): self.EQ["X_old_{i}_{N}".format(N=j, i=i)] = self.EQ["A_old_{i}".format(i=i)] * \ self.EQ["L_old_{i}_{N}".format(N=j, i=i)] ** \ @@ -181,14 +204,21 @@ def init_equation_system(self): self.EQ["K_old_{i}_{N}".format(N=j, i=i)] ** \ self.EQ["betta_old_{i}".format(i=i)] + print(strftime("%H:%M:%S", gmtime()), "X_old", j) + self.COND["balance_new_{N}".format(N=j)] = Abs(self.EQ["X_new_0_{N}".format(N=j)] - sum([self.EQ["X_new_{i}_{N}".format(N=j, i=i)] * self.EQ["a_{i}".format(i=i)] for i in range(0, 3)])) / \ self.EQ["L_{N}".format(N=j, i=i)] + print(strftime("%H:%M:%S", gmtime()), "balance_new", j) + self.COND["consuming_bound_{N}".format(N=j)] = self.EQ["X_new_2_{N}".format(N=j)] + \ self.EQ["X_old_2_{N}".format(N=j)] - print(strftime("%H:%M:%S", gmtime()), j) + + print(strftime("%H:%M:%S", gmtime()), "consuming_bound", j) + + # print(strftime("%H:%M:%S", gmtime()), j) for j in range(tau, self.N): _st_new, _st_old, _su_old = None, None, None @@ -209,7 +239,7 @@ def init_equation_system(self): for st_new in self.generate_s(self.ds, 1.0): - for st_old in self.generate_s(self.ds, 0.2): + for st_old in self.generate_s(self.ds, 0.1): b = balance(*chain(st_new, st_old)) diff --git a/test5.py b/test5.py new file mode 100644 index 0000000..ca02075 --- /dev/null +++ b/test5.py @@ -0,0 +1,284 @@ +import json +from itertools import chain +from time import gmtime, strftime + +from sympy import * + +EPS = 0.001 + + +class RearmingSimulation: + def __init__(self): + self.results = {0: {}} + self.res0 = {} + self.COND = {} + self.EQ = {} + + @staticmethod + def generate_s(size, share): + for i in range(0, size, 1): + for j in range(0, size, 1): + for k in range(0, size, 1): + if (i + j + k) == size * share: + yield (i * 1.0 / size, j * 1.0 / size, k * 1.0 / size) + + @staticmethod + def complex2float(val): + return val.real if isinstance(val, complex) else val + + def init_equation_system(self): + + with open("initial_data.json") as json_file: + initial_data = json_file.read() + json_initial_data = json.loads(initial_data) + + # TODO make substitution on Lambda + # TODO find min Lambda + # TODO make external cycle while difference between F_min >= EPS + + tau = json_initial_data["tau"] + self.N = tau * 2 + dt = float(json_initial_data["dh"]) + nu = float(json_initial_data["nu"]) + self.ds = int(1.0 / float(json_initial_data["ds"])) + self.C = float(json_initial_data["C"]) + self.EQ["L_0"] = json_initial_data["L0"] + self.EQ["a"] = [float(item) for item in json_initial_data["a"]] + + for i in range(0, 3): + self.EQ["mu_{i}".format(i=i)] = float(json_initial_data["mu"][i]) + self.EQ["K_old_{i}_0".format(i=i)] = float(json_initial_data["K_old_0"][i]) + self.EQ["L_old_{i}_0".format(i=i)] = float(json_initial_data["L_old_0"][i]) + self.EQ["theta_old_{i}".format(i=i)] = float(json_initial_data["theta_old"][i]) + self.EQ["A_old_{i}".format(i=i)] = float(json_initial_data["A_old"][i]) + self.EQ["alpha_old_{i}".format(i=i)] = float(json_initial_data["alpha_old"][i]) + self.EQ["betta_old_{i}".format(i=i)] = float(json_initial_data["betta_old"][i]) + self.EQ["a_{i}".format(i=i)] = float(json_initial_data["a"][i]) + + self.EQ["X_old_1_0"] = self.EQ["A_old_1"] * self.EQ["L_old_1_0"] ** self.EQ["alpha_old_1"] * \ + self.EQ["K_old_1_0"] ** self.EQ["betta_old_1"] + + for j in range(1, tau): + for i in range(0, 3): + self.EQ["su_old_{i}_{N}".format(N=j, i=i)] = symbols("su_old_{i}_{N}".format(N=j, i=i), negative=False) + self.EQ["K_old_{i}_{N}".format(N=j, i=i)] = (-self.EQ["mu_{i}".format(i=i)] * + self.EQ["K_old_{i}_{pN}".format(pN=j - 1, i=i)] + + self.EQ["su_old_{i}_{N}".format(N=j, i=i)] * + self.EQ["X_old_1_{pN}".format(pN=j - 1, i=i)]) * dt + \ + self.EQ["K_old_{i}_{pN}".format(pN=j - 1, i=i)] + + self.EQ["L_{N}".format(N=j, i=i)] = self.EQ["L_{pN}".format(pN=j - 1, i=i)] * exp(nu * dt) + + for i in range(0, 3): + self.EQ["L_old_{i}_{N}".format(N=j, i=i)] = self.EQ["L_{N}".format(N=j, i=i)] * \ + self.EQ["theta_old_{i}".format(i=i)] + + for i in range(0, 3): + self.EQ["X_old_{i}_{N}".format(N=j, i=i)] = self.EQ["A_old_{i}".format(i=i)] * \ + self.EQ["L_old_{i}_{N}".format(N=j, i=i)] ** \ + self.EQ["alpha_old_{i}".format(i=i)] * \ + self.EQ["K_old_{i}_{N}".format(N=j, i=i)] ** \ + self.EQ["betta_old_{i}".format(i=i)] + + self.EQ["st_old_{i}_{N}".format(N=j, i=i)] = symbols("st_old_{i}_{N}".format(N=j, i=i), negative=False) + + for i in range(0, 3): + self.EQ["I_{i}_{N}".format(N=j, i=i)] = self.EQ["st_old_{i}_{N}".format(N=j, i=i)] * \ + self.EQ["X_old_1_{pN}".format(pN=j-1, i=i)] + + self.COND["invest_{N}".format(N=j)] = sum([self.EQ["su_old_{i}_{N}".format(N=j, i=i)] + + self.EQ["st_old_{i}_{N}".format(N=j, i=i)] for i in + range(0, 3)]) - 1 + + self.COND["balance_{N}".format(N=j)] = (self.EQ["X_old_0_{N}".format(N=j)] - + (self.EQ["X_old_0_{N}".format(N=j)] * self.EQ["a_0"] + + self.EQ["X_old_1_{N}".format(N=j)] * self.EQ["a_1"] + + self.EQ["X_old_2_{N}".format(N=j)] * self.EQ["a_2"])) / \ + self.EQ["L_{N}".format(N=j)] + + for j in range(1, tau): + s = None + consumption = lambdify(self.EQ["su_old_2_{N}".format(N=j)], self.EQ["X_old_2_{N}".format(N=j)]) + balance = lambdify([self.EQ["su_old_{i}_{N}".format(N=j, i=i)] for i in range(0, 3)], + self.COND["balance_{N}".format(N=j)]) + for S_phase_1 in self.generate_s(self.ds, 0.9): + if consumption(S_phase_1[2]) >= self.C and -1.0 <= balance(*S_phase_1) <= 1.0: + s = S_phase_1 + break + if not s: + print("nothing was found") + break + values = [(self.EQ["su_old_{i}_{N}".format(N=j, i=i)], s[i]) for i in range(0, 3)] + for k in range(j + 1, tau): + self.EQ["X_old_2_{N}".format(N=k)] = self.EQ["X_old_2_{N}".format(N=k)].subs( + [(self.EQ["su_old_{i}_{N}".format(N=j, i=i)], s[i]) for i in range(1, 3)]) + self.COND["balance_{N}".format(N=k)] = self.COND["balance_{N}".format(N=k)].subs(values) + print("step {j} s: {s}".format(j=j, s=s)) + self.results[0].update({self.EQ["su_old_{i}_{N}".format(N=j, i=i)]: s[i] for i in range(0, 3)}) + + for i in range(0, 3): + self.EQ["theta_old_{i}_{pN}".format(i=i, pN=tau - 1)] = self.EQ["theta_old_{i}".format(i=i)] + self.EQ["K_new_{i}_{pN}".format(pN=tau - 1, i=i)] = 0.0 + self.EQ["I_{i}_{tau}".format(tau=tau, i=i)] = 0.0 + self.EQ["A_new_{i}".format(i=i)] = float(json_initial_data["A_new"][i]) + self.EQ["alpha_new_{i}".format(i=i)] = float(json_initial_data["alpha_new"][i]) + self.EQ["betta_new_{i}".format(i=i)] = float(json_initial_data["betta_new"][i]) + self.EQ["k_{i}".format(i=i)] = float(json_initial_data["k_new"][i]) + + self.EQ["X_new_1_{pN}".format(pN=tau - 1)] = 0.0 + + for j in range(tau, self.N): + print(strftime("%H:%M:%S", gmtime()), "st_new K_new", j) + for i in range(0, 3): + self.EQ["st_new_{i}_{N}".format(N=j, i=i)] = symbols("st_new_{i}_{N}".format(N=j, i=i), negative=False) + + self.EQ["K_new_{i}_{N}".format(N=j, i=i)] = (-self.EQ["mu_{i}".format(i=i)] * + self.EQ["K_new_{i}_{pN}".format(pN=j - 1, i=i)] + + self.EQ["I_{i}_{pN}".format(pN=j + 1 - tau, i=i)] + + self.EQ["st_new_{i}_{N}".format(N=j, i=i)] * + self.EQ["X_new_1_{pN}".format(pN=j - 1, i=i)]) * dt + \ + self.EQ["K_new_{i}_{pN}".format(pN=j - 1, i=i)] + + self.EQ["L_{N}".format(N=j)] = self.EQ["L_{pN}".format(pN=j - 1)] * exp(nu * dt) + + for i in range(0, 3): + self.EQ["L_new_v1_{i}_{N}".format(N=j, i=i)] = self.EQ["K_new_{i}_{N}".format(N=j, i=i)] / \ + self.EQ["k_{i}".format(i=i)] + + self.EQ["L_new_v2_{i}_{N}".format(N=j, i=i)] = self.EQ["theta_old_{i}_{pN}".format(i=i, pN=j - 1)] * \ + self.EQ["L_{N}".format(N=j)] + + self.EQ["L_new_{i}_{N}".format(N=j, i=i)] = Min(self.EQ["L_new_v1_{i}_{N}".format(N=j, i=i)], + self.EQ["L_new_v2_{i}_{N}".format(N=j, i=i)]) + + print(strftime("%H:%M:%S", gmtime()), "L_new", j) + + for i in range(0, 3): + self.EQ["theta_new_{i}_{N}".format(N=j, i=i)] = self.EQ["L_new_{i}_{N}".format(N=j, i=i)] / \ + self.EQ["L_{N}".format(N=j, i=i)] + + self.EQ["X_new_{i}_{N}".format(N=j, i=i)] = self.EQ["A_new_{i}".format(i=i)] * \ + self.EQ["L_new_{i}_{N}".format(N=j, i=i)] ** \ + self.EQ["alpha_new_{i}".format(i=i)] * \ + self.EQ["K_new_{i}_{N}".format(N=j, i=i)] ** \ + self.EQ["betta_new_{i}".format(i=i)] + + print(strftime("%H:%M:%S", gmtime()), "theta_new X_new", j) + + for i in range(0, 3): + self.EQ["theta_old_{i}_{N}".format(i=i, N=j)] = self.EQ["theta_old_{i}_{pN}".format(i=i, pN=j - 1)] - \ + self.EQ["theta_new_{i}_{N}".format(N=j, i=i)] + + self.EQ["L_old_{i}_{N}".format(N=j, i=i)] = self.EQ["theta_old_{i}_{N}".format(i=i, N=j)] * \ + self.EQ["L_{N}".format(N=j, i=i)] + + print(strftime("%H:%M:%S", gmtime()), "theta_old L_old", j) + + for i in range(0, 3): + self.EQ["su_old_{i}_{N}".format(N=j, i=i)] = symbols("su_old_{i}_{N}".format(N=j, i=i)) + self.EQ["K_old_{i}_{N}".format(N=j, i=i)] = (-self.EQ["mu_{i}".format(i=i)] * + self.EQ["K_old_{i}_{pN}".format(pN=j - 1, i=i)] + + self.EQ["su_old_{i}_{N}".format(N=j, i=i)] * + self.EQ["X_old_1_{pN}".format(pN=j - 1, i=i)]) * dt + \ + self.EQ["K_old_{i}_{pN}".format(pN=j - 1, i=i)] + + print(strftime("%H:%M:%S", gmtime()), "su_old K_old", j) + + for i in range(0, 3): + self.EQ["X_old_{i}_{N}".format(N=j, i=i)] = self.EQ["A_old_{i}".format(i=i)] * \ + self.EQ["L_old_{i}_{N}".format(N=j, i=i)] ** \ + self.EQ["alpha_old_{i}".format(i=i)] * \ + self.EQ["K_old_{i}_{N}".format(N=j, i=i)] ** \ + self.EQ["betta_old_{i}".format(i=i)] + + print(strftime("%H:%M:%S", gmtime()), "X_old", j) + + self.COND["balance_new_{N}".format(N=j)] = (self.EQ["X_new_0_{N}".format(N=j)] - + (self.EQ["X_new_0_{N}".format(N=j)] * self.EQ["a_0"] + + self.EQ["X_new_1_{N}".format(N=j)] * self.EQ["a_1"] + + self.EQ["X_new_2_{N}".format(N=j)] * self.EQ["a_2"])) / \ + self.EQ["L_{N}".format(N=j)] + + print(strftime("%H:%M:%S", gmtime()), "balance_new", j) + + self.COND["consuming_bound_{N}".format(N=j)] = self.EQ["X_new_2_{N}".format(N=j)] + \ + self.EQ["X_old_2_{N}".format(N=j)] + + print(strftime("%H:%M:%S", gmtime()), "consuming_bound", j) + + for j in range(tau, self.N): + _st_new, _st_old, _su_old = None, None, None + consumption_subs = self.COND["consuming_bound_{N}".format(N=j)].subs(self.results[0]) + consumption = lambdify((self.EQ["st_new_2_{N}".format(N=j)], + self.EQ["su_old_2_{N}".format(N=j)], + self.EQ["st_old_2_{tau}".format(tau=j + 1 - tau)]), consumption_subs) + + balance_subs = self.COND["balance_new_{N}".format(N=j)].subs(self.results[0]) + balance = lambdify([self.EQ["st_new_0_{N}".format(N=j)], + self.EQ["st_new_1_{N}".format(N=j)], + self.EQ["st_new_2_{N}".format(N=j)], + self.EQ["st_old_0_{N}".format(N=j + 1 - tau)], + self.EQ["st_old_1_{N}".format(N=j + 1 - tau)], + self.EQ["st_old_2_{N}".format(N=j + 1 - tau)]], balance_subs) + + b_prev = 0 + + for st_new in self.generate_s(self.ds, 1.0): + + for st_old in self.generate_s(self.ds, 0.1): + + b = balance(*chain(st_new, st_old)) + + if int(b_prev) != int(b) and -5.0 < b < 5.0: + print("step", j, st_old, b) + + if -1.0 <= b <= 1.0: + _st_new, _st_old = st_new, st_old + b_prev = b + + for su_old in self.generate_s(self.ds, 1.0): + if self.complex2float(consumption(st_new[2], su_old[2], st_old[2])) >= self.C: + _su_old = su_old + break + + if _su_old: + break + + if _su_old: + break + + if not _su_old: + print("nothing was found") + break + + print(strftime("%H:%M:%S", gmtime()), + "step {j} st_new: {st_new} su_old: {su_old} st_old: {st_old}".format(j=j, + st_new=_st_new, + su_old=_su_old, + st_old=_st_old)) + + for i in range(0, 3): + self.results[0].update({self.EQ["st_old_{i}_{N}".format(i=i, N=j + 1 - tau)]: _st_old[i]}) + self.results[0].update({self.EQ["su_old_{i}_{N}".format(i=i, N=j)]: _su_old[i]}) + self.results[0].update({self.EQ["st_new_{i}_{N}".format(i=i, N=j)]: _st_new[i]}) + + l_old = [self.EQ["L_old_{i}_{N}".format(N=j, i=i)].subs(self.results[0]) for i in range(0, 3)] + l_new = [self.EQ["L_new_{i}_{N}".format(N=j, i=i)].subs(self.results[0]) for i in range(0, 3)] + + print("L_old: {l_old} L_new: {l_new}".format(l_old=l_old, l_new=l_new)) + + for k in range(j + 1, tau): + self.COND["consuming_bound_{N}".format(N=k)] = \ + self.COND["consuming_bound_{N}".format(N=k)].subs(self.results[0]) + self.COND["balance_new_{N}".format(N=k)] = \ + self.COND["balance_new_{N}".format(N=k)].subs(self.results[0]) + + target_func = sum([EPS * (self.EQ["theta_old_{i}".format(i=i)] - + self.EQ["theta_new_{i}_{N}".format(N=j, i=i)]) ** 2 for i in range(0, 3)]) + + print(strftime("%H:%M:%S", gmtime()), "F =", target_func.subs(self.results[0])) + + +if __name__ == "__main__": + rs = RearmingSimulation() + rs.init_equation_system()