forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.c
847 lines (739 loc) · 18.3 KB
/
utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*
Copyright 2016 - 2019 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "utils.h"
#include "ch.h"
#include "hal.h"
#include "app.h"
#include "conf_general.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
// Private variables
static volatile int sys_lock_cnt = 0;
void utils_step_towards(float *value, float goal, float step) {
if (*value < goal) {
if ((*value + step) < goal) {
*value += step;
} else {
*value = goal;
}
} else if (*value > goal) {
if ((*value - step) > goal) {
*value -= step;
} else {
*value = goal;
}
}
}
float utils_calc_ratio(float low, float high, float val) {
return (val - low) / (high - low);
}
/**
* Make sure that 0 <= angle < 360
*
* @param angle
* The angle to normalize.
*/
void utils_norm_angle(float *angle) {
*angle = fmodf(*angle, 360.0);
if (*angle < 0.0) {
*angle += 360.0;
}
}
/**
* Make sure that -pi <= angle < pi,
*
* TODO: Maybe use fmodf instead?
*
* @param angle
* The angle to normalize in radians.
* WARNING: Don't use too large angles.
*/
void utils_norm_angle_rad(float *angle) {
while (*angle < -M_PI) {
*angle += 2.0 * M_PI;
}
while (*angle > M_PI) {
*angle -= 2.0 * M_PI;
}
}
int utils_truncate_number(float *number, float min, float max) {
int did_trunc = 0;
if (*number > max) {
*number = max;
did_trunc = 1;
} else if (*number < min) {
*number = min;
did_trunc = 1;
}
return did_trunc;
}
int utils_truncate_number_int(int *number, int min, int max) {
int did_trunc = 0;
if (*number > max) {
*number = max;
did_trunc = 1;
} else if (*number < min) {
*number = min;
did_trunc = 1;
}
return did_trunc;
}
int utils_truncate_number_abs(float *number, float max) {
int did_trunc = 0;
if (*number > max) {
*number = max;
did_trunc = 1;
} else if (*number < -max) {
*number = -max;
did_trunc = 1;
}
return did_trunc;
}
float utils_map(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
int utils_map_int(int x, int in_min, int in_max, int out_min, int out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
/**
* Truncate absolute values less than tres to zero. The value
* tres will be mapped to 0 and the value max to max.
*/
void utils_deadband(float *value, float tres, float max) {
if (fabsf(*value) < tres) {
*value = 0.0;
} else {
float k = max / (max - tres);
if (*value > 0.0) {
*value = k * *value + max * (1.0 - k);
} else {
*value = -(k * -*value + max * (1.0 - k));
}
}
}
/**
* Get the difference between two angles. Will always be between -180 and +180 degrees.
* @param angle1
* The first angle
* @param angle2
* The second angle
* @return
* The difference between the angles
*/
float utils_angle_difference(float angle1, float angle2) {
// utils_norm_angle(&angle1);
// utils_norm_angle(&angle2);
//
// if (fabsf(angle1 - angle2) > 180.0) {
// if (angle1 < angle2) {
// angle1 += 360.0;
// } else {
// angle2 += 360.0;
// }
// }
//
// return angle1 - angle2;
// Faster in most cases
float difference = angle1 - angle2;
while (difference < -180.0) difference += 2.0 * 180.0;
while (difference > 180.0) difference -= 2.0 * 180.0;
return difference;
}
/**
* Get the difference between two angles. Will always be between -pi and +pi radians.
* @param angle1
* The first angle in radians
* @param angle2
* The second angle in radians
* @return
* The difference between the angles in radians
*/
float utils_angle_difference_rad(float angle1, float angle2) {
float difference = angle1 - angle2;
while (difference < -M_PI) difference += 2.0 * M_PI;
while (difference > M_PI) difference -= 2.0 * M_PI;
return difference;
}
/**
* Takes the average of a number of angles.
*
* @param angles
* The angles in radians.
*
* @param angles_num
* The number of angles.
*
* @param weights
* The weight of the summarized angles
*
* @return
* The average angle.
*/
float utils_avg_angles_rad_fast(float *angles, float *weights, int angles_num) {
float s_sum = 0.0;
float c_sum = 0.0;
for (int i = 0; i < angles_num; i++) {
float s, c;
utils_fast_sincos_better(angles[i], &s, &c);
s_sum += s * weights[i];
c_sum += c * weights[i];
}
return utils_fast_atan2(s_sum, c_sum);
}
/**
* Get the middle value of three values
*
* @param a
* First value
*
* @param b
* Second value
*
* @param c
* Third value
*
* @return
* The middle value
*/
float utils_middle_of_3(float a, float b, float c) {
float middle;
if ((a <= b) && (a <= c)) {
middle = (b <= c) ? b : c;
} else if ((b <= a) && (b <= c)) {
middle = (a <= c) ? a : c;
} else {
middle = (a <= b) ? a : b;
}
return middle;
}
/**
* Get the middle value of three values
*
* @param a
* First value
*
* @param b
* Second value
*
* @param c
* Third value
*
* @return
* The middle value
*/
int utils_middle_of_3_int(int a, int b, int c) {
int middle;
if ((a <= b) && (a <= c)) {
middle = (b <= c) ? b : c;
} else if ((b <= a) && (b <= c)) {
middle = (a <= c) ? a : c;
} else {
middle = (a <= b) ? a : b;
}
return middle;
}
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float utils_fast_inv_sqrt(float x) {
union {
float as_float;
long as_int;
} un;
float xhalf = 0.5f*x;
un.as_float = x;
un.as_int = 0x5f3759df - (un.as_int >> 1);
un.as_float = un.as_float * (1.5f - xhalf * un.as_float * un.as_float);
return un.as_float;
}
/**
* Fast atan2
*
* See http://www.dspguru.com/dsp/tricks/fixed-point-atan2-with-self-normalization
*
* @param y
* y
*
* @param x
* x
*
* @return
* The angle in radians
*/
float utils_fast_atan2(float y, float x) {
float abs_y = fabsf(y) + 1e-20; // kludge to prevent 0/0 condition
float angle;
if (x >= 0) {
float r = (x - abs_y) / (x + abs_y);
float rsq = r * r;
angle = ((0.1963 * rsq) - 0.9817) * r + (M_PI / 4.0);
} else {
float r = (x + abs_y) / (abs_y - x);
float rsq = r * r;
angle = ((0.1963 * rsq) - 0.9817) * r + (3.0 * M_PI / 4.0);
}
if (y < 0) {
return(-angle);
} else {
return(angle);
}
}
/**
* Truncate the magnitude of a vector.
*
* @param x
* The first component.
*
* @param y
* The second component.
*
* @param max
* The maximum magnitude.
*
* @return
* True if saturation happened, false otherwise
*/
bool utils_saturate_vector_2d(float *x, float *y, float max) {
bool retval = false;
float mag = sqrtf(SQ(*x) + SQ(*y));
max = fabsf(max);
if (mag < 1e-10) {
mag = 1e-10;
}
if (mag > max) {
const float f = max / mag;
*x *= f;
*y *= f;
retval = true;
}
return retval;
}
/**
* Fast sine and cosine implementation.
*
* See http://lab.polygonal.de/?p=205
*
* @param angle
* The angle in radians
* WARNING: Don't use too large angles.
*
* @param sin
* A pointer to store the sine value.
*
* @param cos
* A pointer to store the cosine value.
*/
void utils_fast_sincos(float angle, float *sin, float *cos) {
//always wrap input angle to -PI..PI
while (angle < -M_PI) {
angle += 2.0 * M_PI;
}
while (angle > M_PI) {
angle -= 2.0 * M_PI;
}
// compute sine
if (angle < 0.0) {
*sin = 1.27323954 * angle + 0.405284735 * angle * angle;
} else {
*sin = 1.27323954 * angle - 0.405284735 * angle * angle;
}
// compute cosine: sin(x + PI/2) = cos(x)
angle += 0.5 * M_PI;
if (angle > M_PI) {
angle -= 2.0 * M_PI;
}
if (angle < 0.0) {
*cos = 1.27323954 * angle + 0.405284735 * angle * angle;
} else {
*cos = 1.27323954 * angle - 0.405284735 * angle * angle;
}
}
/**
* Fast sine and cosine implementation.
*
* See http://lab.polygonal.de/?p=205
*
* @param angle
* The angle in radians
* WARNING: Don't use too large angles.
*
* @param sin
* A pointer to store the sine value.
*
* @param cos
* A pointer to store the cosine value.
*/
void utils_fast_sincos_better(float angle, float *sin, float *cos) {
//always wrap input angle to -PI..PI
while (angle < -M_PI) {
angle += 2.0 * M_PI;
}
while (angle > M_PI) {
angle -= 2.0 * M_PI;
}
//compute sine
if (angle < 0.0) {
*sin = 1.27323954 * angle + 0.405284735 * angle * angle;
if (*sin < 0.0) {
*sin = 0.225 * (*sin * -*sin - *sin) + *sin;
} else {
*sin = 0.225 * (*sin * *sin - *sin) + *sin;
}
} else {
*sin = 1.27323954 * angle - 0.405284735 * angle * angle;
if (*sin < 0.0) {
*sin = 0.225 * (*sin * -*sin - *sin) + *sin;
} else {
*sin = 0.225 * (*sin * *sin - *sin) + *sin;
}
}
// compute cosine: sin(x + PI/2) = cos(x)
angle += 0.5 * M_PI;
if (angle > M_PI) {
angle -= 2.0 * M_PI;
}
if (angle < 0.0) {
*cos = 1.27323954 * angle + 0.405284735 * angle * angle;
if (*cos < 0.0) {
*cos = 0.225 * (*cos * -*cos - *cos) + *cos;
} else {
*cos = 0.225 * (*cos * *cos - *cos) + *cos;
}
} else {
*cos = 1.27323954 * angle - 0.405284735 * angle * angle;
if (*cos < 0.0) {
*cos = 0.225 * (*cos * -*cos - *cos) + *cos;
} else {
*cos = 0.225 * (*cos * *cos - *cos) + *cos;
}
}
}
/**
* Calculate the values with the lowest magnitude.
*
* @param va
* The first value.
*
* @param vb
* The second value.
*
* @return
* The value with the lowest magnitude.
*/
float utils_min_abs(float va, float vb) {
float res;
if (fabsf(va) < fabsf(vb)) {
res = va;
} else {
res = vb;
}
return res;
}
/**
* Calculate the values with the highest magnitude.
*
* @param va
* The first value.
*
* @param vb
* The second value.
*
* @return
* The value with the highest magnitude.
*/
float utils_max_abs(float va, float vb) {
float res;
if (fabsf(va) > fabsf(vb)) {
res = va;
} else {
res = vb;
}
return res;
}
/**
* Create string representation of the binary content of a byte
*
* @param x
* The byte.
*
* @param b
* Array to store the string representation in.
*/
void utils_byte_to_binary(int x, char *b) {
b[0] = '\0';
int z;
for (z = 128; z > 0; z >>= 1) {
strcat(b, ((x & z) == z) ? "1" : "0");
}
}
float utils_throttle_curve(float val, float curve_acc, float curve_brake, int mode) {
float ret = 0.0;
if (val < -1.0) {
val = -1.0;
}
if (val > 1.0) {
val = 1.0;
}
float val_a = fabsf(val);
float curve;
if (val >= 0.0) {
curve = curve_acc;
} else {
curve = curve_brake;
}
// See
// http://math.stackexchange.com/questions/297768/how-would-i-create-a-exponential-ramp-function-from-0-0-to-1-1-with-a-single-val
if (mode == 0) { // Exponential
if (curve >= 0.0) {
ret = 1.0 - powf(1.0 - val_a, 1.0 + curve);
} else {
ret = powf(val_a, 1.0 - curve);
}
} else if (mode == 1) { // Natural
if (fabsf(curve) < 1e-10) {
ret = val_a;
} else {
if (curve >= 0.0) {
ret = 1.0 - ((expf(curve * (1.0 - val_a)) - 1.0) / (expf(curve) - 1.0));
} else {
ret = (expf(-curve * val_a) - 1.0) / (expf(-curve) - 1.0);
}
}
} else if (mode == 2) { // Polynomial
if (curve >= 0.0) {
ret = 1.0 - ((1.0 - val_a) / (1.0 + curve * val_a));
} else {
ret = val_a / (1.0 - curve * (1.0 - val_a));
}
} else { // Linear
ret = val_a;
}
if (val < 0.0) {
ret = -ret;
}
return ret;
}
/**
* A system locking function with a counter. For every lock, a corresponding unlock must
* exist to unlock the system. That means, if lock is called five times, unlock has to
* be called five times as well. Note that chSysLock and chSysLockFromIsr are the same
* for this port.
*/
void utils_sys_lock_cnt(void) {
if (!sys_lock_cnt) {
chSysLock();
}
sys_lock_cnt++;
}
/**
* A system unlocking function with a counter. For every lock, a corresponding unlock must
* exist to unlock the system. That means, if lock is called five times, unlock has to
* be called five times as well. Note that chSysUnlock and chSysUnlockFromIsr are the same
* for this port.
*/
void utils_sys_unlock_cnt(void) {
if (sys_lock_cnt) {
sys_lock_cnt--;
if (!sys_lock_cnt) {
chSysUnlock();
}
}
}
uint32_t utils_crc32c(uint8_t *data, uint32_t len) {
uint32_t crc = 0xFFFFFFFF;
for (uint32_t i = 0; i < len;i++) {
uint32_t byte = data[i];
crc = crc ^ byte;
for (int j = 7;j >= 0;j--) {
uint32_t mask = -(crc & 1);
crc = (crc >> 1) ^ (0x82F63B78 & mask);
}
}
return ~crc;
}
// Yes, this is only the average...
void utils_fft32_bin0(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 32;i++) {
*real += real_in[i];
}
*real /= 32.0;
}
void utils_fft32_bin1(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 32;i++) {
*real += real_in[i] * utils_tab_cos_32_1[i];
*imag -= real_in[i] * utils_tab_sin_32_1[i];
}
*real /= 32.0;
*imag /= 32.0;
}
void utils_fft32_bin2(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 32;i++) {
*real += real_in[i] * utils_tab_cos_32_2[i];
*imag -= real_in[i] * utils_tab_sin_32_2[i];
}
*real /= 32.0;
*imag /= 32.0;
}
void utils_fft16_bin0(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 16;i++) {
*real += real_in[i];
}
*real /= 16.0;
}
void utils_fft16_bin1(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 16;i++) {
*real += real_in[i] * utils_tab_cos_32_1[2 * i];
*imag -= real_in[i] * utils_tab_sin_32_1[2 * i];
}
*real /= 16.0;
*imag /= 16.0;
}
void utils_fft16_bin2(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 16;i++) {
*real += real_in[i] * utils_tab_cos_32_2[2 * i];
*imag -= real_in[i] * utils_tab_sin_32_2[2 * i];
}
*real /= 16.0;
*imag /= 16.0;
}
void utils_fft8_bin0(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 8;i++) {
*real += real_in[i];
}
*real /= 8.0;
}
void utils_fft8_bin1(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 8;i++) {
*real += real_in[i] * utils_tab_cos_32_1[4 * i];
*imag -= real_in[i] * utils_tab_sin_32_1[4 * i];
}
*real /= 8.0;
*imag /= 8.0;
}
void utils_fft8_bin2(float *real_in, float *real, float *imag) {
*real = 0.0;
*imag = 0.0;
for (int i = 0;i < 8;i++) {
*real += real_in[i] * utils_tab_cos_32_2[4 * i];
*imag -= real_in[i] * utils_tab_sin_32_2[4 * i];
}
*real /= 8.0;
*imag /= 8.0;
}
/**
* Get ID of second motor.
*
* @return
* id for second motor. -1 if this hardware only has one motor.
*/
uint8_t utils_second_motor_id(void) {
#ifdef HW_HAS_DUAL_MOTORS
uint8_t id_next = app_get_configuration()->controller_id + 1;
if (id_next == 255) {
id_next = 0;
}
return id_next;
#else
return 0;
#endif
}
int utils_read_hall(bool is_second_motor) {
int h1, h2, h3;
if (is_second_motor) {
h1 = READ_HALL1_2();
h2 = READ_HALL2_2();
h3 = READ_HALL3_2();
h1 += READ_HALL1_2();
h2 += READ_HALL2_2();
h3 += READ_HALL3_2();
h1 += READ_HALL1_2();
h2 += READ_HALL2_2();
h3 += READ_HALL3_2();
} else {
h1 = READ_HALL1();
h2 = READ_HALL2();
h3 = READ_HALL3();
h1 += READ_HALL1();
h2 += READ_HALL2();
h3 += READ_HALL3();
h1 += READ_HALL1();
h2 += READ_HALL2();
h3 += READ_HALL3();
}
return (h1 > 1) | ((h2 > 1) << 1) | ((h3 > 1) << 2);
}
// A mapping of a samsung 30q cell for % remaining capacity vs. voltage from
// 4.2 to 3.2, note that the you lose 15% of the 3Ah rated capacity in this range
float utils_batt_liion_norm_v_to_capacity(float norm_v) {
// constants for polynomial fit of lithium ion battery
const float li_p[] = {
-2.979767, 5.487810, -3.501286, 1.675683, 0.317147};
utils_truncate_number(&norm_v,0.0,1.0);
float v2 = norm_v*norm_v;
float v3 = v2*norm_v;
float v4 = v3*norm_v;
float v5 = v4*norm_v;
float capacity = li_p[0] * v5 + li_p[1] * v4 + li_p[2] * v3 +
li_p[3] * v2 + li_p[4] * norm_v;
return capacity;
}
static int uint16_cmp_func (const void *a, const void *b) {
return (*(uint16_t*)a - *(uint16_t*)b);
}
uint16_t utils_median_filter_uint16_run(uint16_t *buffer,
unsigned int *buffer_index, unsigned int filter_len, uint16_t sample) {
buffer[*buffer_index++] = sample;
*buffer_index %= filter_len;
uint16_t buffer_sorted[filter_len]; // Assume we have enough stack space
memcpy(buffer_sorted, buffer, sizeof(uint16_t) * filter_len);
qsort(buffer_sorted, filter_len, sizeof(uint16_t), uint16_cmp_func);
return buffer_sorted[filter_len / 2];
}
const float utils_tab_sin_32_1[] = {
0.000000, 0.195090, 0.382683, 0.555570, 0.707107, 0.831470, 0.923880, 0.980785,
1.000000, 0.980785, 0.923880, 0.831470, 0.707107, 0.555570, 0.382683, 0.195090,
0.000000, -0.195090, -0.382683, -0.555570, -0.707107, -0.831470, -0.923880, -0.980785,
-1.000000, -0.980785, -0.923880, -0.831470, -0.707107, -0.555570, -0.382683, -0.195090};
const float utils_tab_sin_32_2[] = {
0.000000, 0.382683, 0.707107, 0.923880, 1.000000, 0.923880, 0.707107, 0.382683,
0.000000, -0.382683, -0.707107, -0.923880, -1.000000, -0.923880, -0.707107, -0.382683,
-0.000000, 0.382683, 0.707107, 0.923880, 1.000000, 0.923880, 0.707107, 0.382683,
0.000000, -0.382683, -0.707107, -0.923880, -1.000000, -0.923880, -0.707107, -0.382683};
const float utils_tab_cos_32_1[] = {
1.000000, 0.980785, 0.923880, 0.831470, 0.707107, 0.555570, 0.382683, 0.195090,
0.000000, -0.195090, -0.382683, -0.555570, -0.707107, -0.831470, -0.923880, -0.980785,
-1.000000, -0.980785, -0.923880, -0.831470, -0.707107, -0.555570, -0.382683, -0.195090,
-0.000000, 0.195090, 0.382683, 0.555570, 0.707107, 0.831470, 0.923880, 0.980785};
const float utils_tab_cos_32_2[] = {
1.000000, 0.923880, 0.707107, 0.382683, 0.000000, -0.382683, -0.707107, -0.923880,
-1.000000, -0.923880, -0.707107, -0.382683, -0.000000, 0.382683, 0.707107, 0.923880,
1.000000, 0.923880, 0.707107, 0.382683, 0.000000, -0.382683, -0.707107, -0.923880,
-1.000000, -0.923880, -0.707107, -0.382683, -0.000000, 0.382683, 0.707107, 0.923880};