Skip to content

Latest commit

 

History

History
78 lines (62 loc) · 2.26 KB

README.md

File metadata and controls

78 lines (62 loc) · 2.26 KB

CosmoFlow

Link to the application: https://portal.nersc.gov/project/m3363/

References:

How to use (training)

Setup and download dataset

  1. Get the SBI-FAIR repository

    git clone --depth 1 https://github.com/DSC-SPIDAL/sbi-fair
    SBI_FAIR_DIR=${PWD}/sbi-fair
  2. Create a directory for downloading datasets and store results

    mkdir cosmoflow
    cd cosmoflow
    mkdir output
  3. Get the datasets for training

    ${SBI_FAIR_DIR}/tools/scripts/load_dataset.py ${SBI_FAIR_DIR}/datasets/cosmoflow/datasets.yaml cosmoUniverse_2019_05_4parE_tf_v2_mini

    You can use any of the following datasets:

    • cosmoUniverse_2019_05_4parE_tf_v2_mini
    • cosmoUniverse_2019_05_4parE_tf_v2
  4. Create a file with parameters

    # Few epochs for testing
    echo 'epochs: 2' > options.yaml 

    We will update the list of available options here, in the meantime please refer to the original repository https://github.com/sparticlesteve/cosmoflow-benchmark for the list of all options.

Using Docker

  1. Build Docker container

    cd ${SBI_FAIR_DIR}/models/cosmoflow
    ./build_docker.sh
    cd - # Go back to results directory 
  2. Run Training

    GPU_SWITCH='--runtime=nvidia --gpus all' # or '' for CPU workloads
    # Mount the directories with the dataset
    VOLUME_MOUNTS='-v ./cosmoUniverse_2019_05_4parE_tf_v2_mini/default:/input/train_dataset -v ./output:/output -v ./options.yaml:/input/options.yaml'
    docker run ${GPU_SWITCH} ${VOLUME_MOUNTS} cosmoflow run train

Using Apptainer

  1. Build Apptainer container

    cd ${SBI_FAIR_DIR}/models/cosmoflow
    ./build_apptainer.sh
    cd - # Go back to results directory 
  2. Run Training

    GPU_SWITCH='--nv' # or '' for CPU workloads
    # Mount the directories with the dataset
    VOLUME_MOUNTS='--bind ./cosmoUniverse_2019_05_4parE_tf_v2_mini/default:/input/train_dataset --bind ./output:/output --bind ./options.yaml:/input/options.yaml'
    apptainer run --app train ${GPU_SWITCH} ${VOLUME_MOUNTS} ${SBI_FAIR_DIR}/models/cosmoflow/cosmoflow.sif

Results

The outputs of the run will be available in ./output.