Skip to content

Latest commit

 

History

History
83 lines (68 loc) · 2.52 KB

README.md

File metadata and controls

83 lines (68 loc) · 2.52 KB

CaloGAN

Link to the application: https://github.com/hep-lbdl/CaloGAN

References:

How to use (training)

Setup and download dataset

  1. Get the SBI-FAIR repository

    git clone --depth 1 https://github.com/DSC-SPIDAL/sbi-fair
    SBI_FAIR_DIR=${PWD}/sbi-fair
  2. Create a directory for downloading datasets and store results

    mkdir calogan
    cd calogan
    mkdir output
  3. Get the datasets for training

    ${SBI_FAIR_DIR}/tools/scripts/load_dataset.py ${SBI_FAIR_DIR}/datasets/calogan/datasets.yaml calogan_eplus

    You can use any of the following datasets:

    • calogan_eplus
    • calogan_gamma
    • calogan_piplus
  4. Create a file with parameters

    # Few epochs for testing
    echo 'epochs: 2' > options.yaml 

    We will update the list of available options here, in the meantime please refer to the original repository https://github.com/hep-lbdl/CaloGAN for the list of all options.

Using Docker

  1. Build Docker container

    cd ${SBI_FAIR_DIR}/models/calogan
    ./build_docker.sh
    cd - # Go back to results directory 
  2. Run Training

    At the moment the provided containers are likely to fail to using GPU with recent systems due to CUDA incompatibilities. We are working to fix that.

    GPU_SWITCH='' # or '--runtime=nvidia --gpus all' for GPU workloads
    # Mount the directories with the dataset
    VOLUME_MOUNTS='-v ./calogan_eplus/default/eplus.hdf5:/input/train_dataset -v ./output:/output -v ./options.yaml:/input/options.yaml'
    docker run ${GPU_SWITCH} ${VOLUME_MOUNTS} calogan run train

Using Apptainer

  1. Build Apptainer container

    cd ${SBI_FAIR_DIR}/models/calogan
    ./build_apptainer.sh
    cd - # Go back to results directory 
  2. Run Training

    At the moment the provided containers are likely to fail to using GPU with recent systems due to CUDA incompatibilities. We are working to fix that.

    GPU_SWITCH=''  # or '--nv' for GPU workloads
    # Mount the directories with the dataset
    VOLUME_MOUNTS='--bind ./calogan_eplus/default/eplus.hdf5:/input/train_dataset --bind ./output:/output --bind ./options.yaml:/input/options.yaml'
    apptainer run --app train ${GPU_SWITCH} ${VOLUME_MOUNTS} ${SBI_FAIR_DIR}/models/calogan/calogan.sif

Results

The outputs of the run will be available in ./output.