forked from FuxiComputerVision/Nefii
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sg_envmap_material.py
447 lines (376 loc) · 18.2 KB
/
sg_envmap_material.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
# from collections import OrderedDict
from model.embedder import get_embedder
import utils.debug_helper as debug
# default tensorflow initialization of linear layers
def weights_init(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias.data)
### uniformly distribute points on a sphere
def fibonacci_sphere(samples=1):
'''
https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
:param samples:
:return:
'''
points = []
phi = np.pi * (3. - np.sqrt(5.)) # golden angle in radians
for i in range(samples):
y = 1 - (i / float(samples - 1)) * 2 # y goes from 1 to -1
radius = np.sqrt(1 - y * y) # radius at y
theta = phi * i # golden angle increment
x = np.cos(theta) * radius
z = np.sin(theta) * radius
points.append([x, y, z])
points = np.array(points)
return points
def compute_energy(lgtSGs):
lgtLambda = torch.abs(lgtSGs[:, 3:4]) # [M, 1]
lgtMu = torch.abs(lgtSGs[:, 4:]) # [M, 3]
energy = lgtMu * 2.0 * np.pi / lgtLambda * (1.0 - torch.exp(-2.0 * lgtLambda))
return energy
class EnvmapMaterialNetwork(nn.Module):
def __init__(self, multires=0, dims=[256, 256, 256],
white_specular=False,
white_light=False,
num_lgt_sgs=32,
num_base_materials=2,
upper_hemi=False,
fix_specular_albedo=False,
specular_albedo=[-1.,-1.,-1.],
init_specular_reflectance=-1,
correct_normal=False,
roughness_mlp=False,
specular_mlp=False,
same_mlp=False,
dims_roughness=[256, 256, 256],
dims_specular=[256, 256, 256],
feature_vector_size=0,
use_normal=False,
light_type='sg'):
super().__init__()
self.correct_normal = correct_normal
self.roughness_mlp = roughness_mlp
self.specular_mlp = specular_mlp
self.same_mlp = same_mlp
self.feature_vector_size = feature_vector_size
self.fix_specular_albedo = fix_specular_albedo
self.fake_roughness = False
self.fake_specular = False
self.light_type = light_type
input_dim = 3
self.embed_fn = None
if multires > 0:
self.embed_fn, input_dim = get_embedder(multires)
input_dim += feature_vector_size
self.use_normal = use_normal
if use_normal:
input_dim += 3
# self.actv_fn = nn.ReLU()
self.actv_fn = nn.ELU()
# self.actv_fn = nn.LeakyReLU(0.05)
############## spatially-varying diffuse albedo############
print('Diffuse albedo network size: ', dims)
diffuse_albedo_layers = []
dim = input_dim
dim_o = 3
if self.roughness_mlp and self.same_mlp: dim_o += 1
if not self.fix_specular_albedo and self.specular_mlp and self.same_mlp: dim_o += 1
for i in range(len(dims)):
diffuse_albedo_layers.append(nn.Linear(dim, dims[i]))
diffuse_albedo_layers.append(self.actv_fn)
dim = dims[i]
diffuse_albedo_layers.append(nn.Linear(dim, dim_o))
self.diffuse_albedo_layers = nn.Sequential(*diffuse_albedo_layers)
# self.diffuse_albedo_layers.apply(weights_init)
if self.correct_normal:
############## spatially-varying normal############
print('Delta normal network size: ', dims)
delta_normal_layers = []
dim = input_dim
for i in range(len(dims)):
delta_normal_layers.append(nn.Linear(dim, dims[i]))
delta_normal_layers.append(self.actv_fn)
dim = dims[i]
delta_normal_layers.append(nn.Linear(dim, 2))
self.delta_normal_layers_layers = nn.Sequential(*delta_normal_layers)
else:
self.delta_normal_layers_layers = None
##################### specular rgb ########################
self.numLgtSGs = num_lgt_sgs
self.numBrdfSGs = num_base_materials
print('Number of Light SG: ', self.numLgtSGs)
print('Number of BRDF SG: ', self.numBrdfSGs)
if self.light_type == "sg":
# by using normal distribution, the lobes are uniformly distributed on a sphere at initialization
self.white_light = white_light
if self.white_light:
print('Using white light!')
self.lgtSGs = nn.Parameter(torch.randn(self.numLgtSGs, 5), requires_grad=True) # [M, 5]; lobe + lambda + mu
# self.lgtSGs.data[:, -1] = torch.clamp(torch.abs(self.lgtSGs.data[:, -1]), max=0.01)
else:
self.lgtSGs = nn.Parameter(torch.randn(self.numLgtSGs, 7), requires_grad=True) # [M, 7]; lobe + lambda + mu
self.lgtSGs.data[:, -2:] = self.lgtSGs.data[:, -3:-2].expand((-1, 2))
# self.lgtSGs.data[:, -3:] = torch.clamp(torch.abs(self.lgtSGs.data[:, -3:]), max=0.01)
# make sure lambda is not too close to zero
self.lgtSGs.data[:, 3:4] = 20. + torch.abs(self.lgtSGs.data[:, 3:4] * 100.)
# make sure total energy is around 1.
energy = compute_energy(self.lgtSGs.data)
# print('init envmap energy: ', torch.sum(energy, dim=0).clone().cpu().numpy())
self.lgtSGs.data[:, 4:] = torch.abs(self.lgtSGs.data[:, 4:]) / torch.sum(energy, dim=0, keepdim=True) * 2. * np.pi
energy = compute_energy(self.lgtSGs.data)
print('init envmap energy: ', torch.sum(energy, dim=0).clone().cpu().numpy())
# deterministicly initialize lobes
lobes = fibonacci_sphere(self.numLgtSGs).astype(np.float32)
self.lgtSGs.data[:, :3] = torch.from_numpy(lobes)
# check if lobes are in upper hemisphere
self.upper_hemi = upper_hemi
if self.upper_hemi:
print('Restricting lobes to upper hemisphere!')
self.restrict_lobes_upper = lambda lgtSGs: torch.cat((lgtSGs[..., :1], torch.abs(lgtSGs[..., 1:2]), lgtSGs[..., 2:]), dim=-1)
# limit lobes to upper hemisphere
self.lgtSGs.data = self.restrict_lobes_upper(self.lgtSGs.data)
else:
self.upper_hemi = False
self.white_light = False
self.lgtSGs = nn.Parameter(torch.randn(self.numLgtSGs, self.numLgtSGs, 3), requires_grad=True) # [M, M, 3]
self.lgtSGs.data = torch.abs(self.lgtSGs.data)
# self.lgtSGs.data = self.lgtSGs.data / torch.sum(self.lgtSGs.data.reshape(-1, 3), dim=0).reshape(1, 1, 3)
self.white_specular = white_specular
if self.fix_specular_albedo:
print('Fixing specular albedo: ', specular_albedo)
specular_albedo = np.array(specular_albedo).astype(np.float32)
assert(self.numBrdfSGs == 1)
assert(np.all(np.logical_and(specular_albedo > 0., specular_albedo < 1.)))
self.specular_reflectance = nn.Parameter(torch.from_numpy(specular_albedo).reshape((self.numBrdfSGs, 3)),
requires_grad=False) # [K, 1]
else:
if not self.specular_mlp:
if self.white_specular:
print('Using white specular reflectance!')
self.specular_reflectance = nn.Parameter(torch.randn(self.numBrdfSGs, 1),
requires_grad=True) # [K, 1]
else:
self.specular_reflectance = nn.Parameter(torch.randn(self.numBrdfSGs, 3),
requires_grad=True) # [K, 3]
self.specular_reflectance.data = torch.abs(self.specular_reflectance.data)
if init_specular_reflectance > 0:
self.specular_reflectance.data[:] = np.log(1 / (1 - init_specular_reflectance) - 1)
print('init specular_reflectance manually!')
print('init specular_reflectance: ', 1.0 / (1.0 + np.exp(-self.specular_reflectance.data)))
elif not self.same_mlp:
output_specular_dim = 1 if self.white_specular else 3
############## spatially-varying specular############
print('specular network size: ', dims_specular)
specular_layers = []
dim = input_dim
for i in range(len(dims_specular)):
specular_layers.append(nn.Linear(dim, dims_specular[i]))
specular_layers.append(self.actv_fn)
dim = dims_specular[i]
specular_layers.append(nn.Linear(dim, output_specular_dim))
specular_layers.append(nn.Sigmoid())
self.specular_layers = nn.Sequential(*specular_layers)
if not self.roughness_mlp:
if self.numBrdfSGs > 1:
roughness = [np.random.uniform(-1.5, 2.0) for i in range(self.numBrdfSGs)]
else:
# optimize
# roughness = [np.random.uniform(-1.5, -1.0) for i in range(self.numBrdfSGs)] # small roughness
roughness = [np.random.uniform(1.5, 2.0) for i in range(self.numBrdfSGs)] # big roughness
roughness = np.array(roughness).astype(dtype=np.float32).reshape((self.numBrdfSGs, 1)) # [K, 1]
print('init roughness: ', 1.0 / (1.0 + np.exp(-roughness)))
self.roughness = nn.Parameter(torch.from_numpy(roughness),
requires_grad=True)
elif not self.same_mlp:
############## spatially-varying roughness############
print('roughness network size: ', dims_roughness)
roughness_layers = []
dim = input_dim
for i in range(len(dims_roughness)):
roughness_layers.append(nn.Linear(dim, dims_roughness[i]))
roughness_layers.append(self.actv_fn)
dim = dims_roughness[i]
roughness_layers.append(nn.Linear(dim, 1))
roughness_layers.append(nn.Sigmoid())
self.roughness_layers = nn.Sequential(*roughness_layers)
# blending weights
self.blending_weights_layers = []
if self.numBrdfSGs > 1:
dim = input_dim
for i in range(3):
self.blending_weights_layers.append(nn.Sequential(nn.Linear(dim, 256), self.actv_fn))
dim = 256
self.blending_weights_layers.append(nn.Linear(dim, self.numBrdfSGs))
self.blending_weights_layers = nn.Sequential(*self.blending_weights_layers)
def freeze_light(self):
self.lgtSGs.requires_grad = False
def freeze_all_except_diffuse(self):
self.lgtSGs.requires_grad = False
if self.specular_reflectance:
self.specular_reflectance.requires_grad = False
elif self.specular_mlp:
for param in self.specular_layers.parameters():
param.requires_grad = False
if self.roughness:
self.roughness.requires_grad = False
elif self.roughness_mlp:
for param in self.roughness_layers.parameters():
param.requires_grad = False
if self.numBrdfSGs > 1:
for param in self.blending_weights_layers.parameters():
param.requires_grad = False
def freeze_diffuse(self):
for param in self.diffuse_albedo_layers.parameters():
param.requires_grad = False
def unfreeze_diffuse(self):
for param in self.diffuse_albedo_layers.parameters():
param.requires_grad = True
def unfreeze_all(self):
for param in self.parameters():
param.requires_grad = True
def freeze_all(self):
for param in self.parameters():
param.requires_grad = False
def set_roughness_fake(self, state):
self.fake_roughness = state
def set_specular_fake(self, state):
self.fake_specular = state
def get_light(self):
lgtSGs = self.lgtSGs.clone().detach()
if self.white_light:
lgtSGs = torch.cat((lgtSGs, lgtSGs[..., -1:], lgtSGs[..., -1:]), dim=-1)
if self.upper_hemi:
# limit lobes to upper hemisphere
lgtSGs = self.restrict_lobes_upper(lgtSGs)
return lgtSGs
def load_light(self, path):
assert(path.endswith('.npy'))
device = self.lgtSGs.data.device
self.lgtSGs = nn.Parameter(torch.from_numpy(np.load(path)).to(device), requires_grad=True)
self.numLgtSGs = self.lgtSGs.data.shape[0]
if self.lgtSGs.data.shape[1] == 7 or self.light_type != 'sg':
self.white_light = False
def get_base_materials(self):
if not self.roughness_mlp:
roughness = torch.sigmoid(self.roughness.clone().detach())
else:
roughness = torch.zeros(1, 1)
if self.fix_specular_albedo:
specular_reflectacne = self.specular_reflectance
else:
if not self.specular_mlp:
specular_reflectacne = torch.sigmoid(self.specular_reflectance.clone().detach())
if self.white_specular:
specular_reflectacne = specular_reflectacne.expand((-1, 3)) # [K, 3]
else:
specular_reflectacne = torch.zeros(1, 3)
return roughness, specular_reflectacne
def correct_normal(self, n, points):
if not self.correct_normal:
print("[Error] No correct normal!")
return n
if self.embed_fn is not None:
points = self.embed_fn(points)
delta_normal_angle = self.delta_normal_layers_layers(points)
delta_normal_angle = torch.cat([
torch.sigmoid(delta_normal_angle[..., 0:1]) * torch.pi * 0.5,
torch.tanh(delta_normal_angle[..., 1:2]) * torch.pi
], dim=-1)
theta = delta_normal_angle[..., 0:1]
phi = delta_normal_angle[..., 1:2]
z = theta.cos()
y = theta.sin() * phi.sin()
x = theta.sin() * phi.cos()
xyz = torch.cat([x, y, z], dim=-1)
x_axis = torch.zeros_like(n)
x_axis[..., 0] = 1
y_axis = torch.zeros_like(n)
y_axis[..., 1] = 1
vup = torch.where((n[..., 0:1] > 0.9).expand(n.shape), y_axis, x_axis)
t = torch.cross(vup, n, dim=-1) # [..., 3]
t = t / (torch.norm(t, dim=-1, keepdim=True) + 1e-8)
s = torch.cross(t, n, dim=-1)
vec = xyz[..., :1] * t + xyz[..., 1:2] * s + xyz[..., 2:] * n
return vec
def forward(self, points, feature_vector=None, normal=None):
# if points is None:
# diffuse_albedo = None
# blending_weights = None
# else:
if self.embed_fn is not None:
points = self.embed_fn(points)
if feature_vector is not None:
points = torch.cat([points, feature_vector], dim=-1)
if self.use_normal and normal is not None:
points = torch.cat([points, normal], dim=-1)
brdf = self.diffuse_albedo_layers(points)
diffuse_albedo = torch.sigmoid(brdf[..., :3])
offset = 3
if self.roughness_mlp and self.same_mlp:
roughness = torch.sigmoid(brdf[..., offset:offset+1])
offset += 1
if not self.fix_specular_albedo and self.specular_mlp and self.same_mlp:
specular_reflectacne = torch.sigmoid(brdf[..., offset:offset+1])
offset += 1
if self.numBrdfSGs > 1:
blending_weights = F.softmax(self.blending_weights_layers(points), dim=-1)
else:
blending_weights = None
if self.fix_specular_albedo:
specular_reflectacne = self.specular_reflectance
else:
if not self.specular_mlp:
specular_reflectacne = torch.sigmoid(self.specular_reflectance)
elif not self.same_mlp:
specular_reflectacne = self.specular_layers(points)
if self.white_specular:
specular_reflectacne = specular_reflectacne.expand((-1, 3)) # [K, 3]
if not self.roughness_mlp:
roughness = torch.sigmoid(self.roughness)
elif not self.same_mlp:
roughness = self.roughness_layers(points)
# prevent roughness become zero.
# when become zero, the material is pure mirror, the general brdf shading cannot handle this case
# set the roughness clamp as 0.089 according to float32 precision. reference to https://google.github.io/filament/Filament.html#toc4.8.3.3
TINNY_ROUGHNESS = 0.089
# roughness[roughness < TINNY_ROUGHNESS] += TINNY_ROUGHNESS
roughness = (1 - TINNY_ROUGHNESS) * roughness + TINNY_ROUGHNESS
if self.fake_roughness:
roughness = 0 * roughness + 0.5
if self.fake_specular:
specular_reflectacne = 0 * specular_reflectacne + 0.5
# remap specular according to https://google.github.io/filament/Filament.html#toc4.8.3.2
specular_reflectacne = self.specular_remap(specular_reflectacne)
lgtSGs = self.get_lgtSGs()
ret = dict([
('sg_lgtSGs', lgtSGs),
('sg_specular_reflectance', specular_reflectacne),
('sg_roughness', roughness),
('sg_diffuse_albedo', diffuse_albedo),
('sg_blending_weights', blending_weights)
])
return ret
def get_lgtSGs(self):
lgtSGs = self.lgtSGs
if self.light_type == 'sg':
if self.white_light:
lgtSGs = torch.cat((lgtSGs, lgtSGs[..., -1:], lgtSGs[..., -1:]), dim=-1)
if self.upper_hemi:
# limit lobes to upper hemisphere
lgtSGs = self.restrict_lobes_upper(lgtSGs)
else:
lgtSGs = torch.abs(lgtSGs)
return lgtSGs
@staticmethod
# remap specular according to https://google.github.io/filament/Filament.html#toc4.8.3.2
def specular_remap(specular_reflectacne):
return 0.16 * specular_reflectacne ** 2
@staticmethod
def specular_inv_remap(specular_reflectacne):
return (specular_reflectacne / 0.16) ** 0.5