forked from siit-vtt/semi-supervised-learning-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
check_result.py
101 lines (89 loc) · 3.2 KB
/
check_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import numpy as np
import os
import argparse
parser = argparse.ArgumentParser(description='PyTorch Places365 Training')
parser.add_argument('--fdir', default='ckpt', type=str, metavar='PATH',
help='path to load checkpoint (default: ckpt)')
parser.add_argument('--fname', default='wideresnet', type=str, metavar='PATH',
help='checkpoint filename (default: wideresnet)')
parser.add_argument('--nckpt',default=1, type=int, help='num of checkpoints')
parser.add_argument('--plot',default=False, type=bool, help='num of checkpoints')
args = parser.parse_args()
fdir = args.fdir
fname = args.fname
nckpt = args.nckpt
best_prec1s = []
for i in range(nckpt):
path = os.path.join(fdir,fname+str(i)+'_latest.pth.tar')
checkpoint = torch.load(path)
print(path)
if 'best_test_prec1_t' in checkpoint:
print("Teacher precision")
best_prec1 = 100.0 - checkpoint['best_test_prec1_t']
else:
best_prec1 = 100.0 - checkpoint['best_test_prec1']
best_prec1_val = 100.0 - checkpoint['best_prec1']
print('Test Error: ',best_prec1)
print('Val. Error: ',best_prec1_val)
best_prec1s.append(best_prec1)
fname_acc = os.path.join(fdir,'accuracy%d.png'%i)
fname_lr = os.path.join(fdir,'lr%d.png'%i)
fname_loss = os.path.join(fdir,'losses%d.png'%i)
acc1_tr = checkpoint['acc1_tr']
acc1_val = checkpoint['acc1_val']
acc1_te = checkpoint['acc1_test']
losses_tr = checkpoint['losses_tr']
losses_val = checkpoint['losses_val']
losses_te = checkpoint['losses_test']
weights_cl = checkpoint['weights_cl']
learning_rate = checkpoint['learning_rate']
losses_cl_tr = []
if 'losses_cl_tr' in checkpoint:
losses_cl_tr = checkpoint['losses_cl_tr']
if(args.plot):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.subplot(1,1,1)
ax.plot(acc1_tr, label='train_acc1')
ax.plot(acc1_val, label='val_acc1')
ax.plot(acc1_te, label='test_acc1')
ax.legend()
ax.grid(linestyle='--')
plt.savefig(fname_acc)
#plt.show()
plt.clf()
fig = plt.figure()
ax = plt.subplot(2,1,1)
ax.plot(learning_rate, label='lr')
ax.legend()
ax.grid(linestyle='--')
ax = plt.subplot(2,1,2)
ax.plot(weights_cl, label='w_cl')
ax.legend()
ax.grid(linestyle='--')
plt.savefig(fname_lr)
#plt.show()
plt.clf()
fig = plt.figure()
ax = plt.subplot(2,1,1)
ax.plot(losses_tr, label='train_loss')
ax.plot(losses_val, label='val_loss')
ax.plot(losses_te, label='test_loss')
ax.legend()
ax.grid(linestyle='--')
ax = plt.subplot(2,1,2)
ax.plot(losses_cl_tr, label='train_loss_cl')
ax.legend()
ax.grid(linestyle='--')
plt.savefig(fname_loss)
#plt.show()
plt.clf()
#plt.show()
best_prec1s = np.array(best_prec1s)
bmean = np.around(np.mean(best_prec1s), decimals=2)
bstd = np.around(np.std(best_prec1s), decimals=2)
print('Best error rate: %.2f(%.2f)'%(bmean,bstd))
#print('Best precision: ',bmean,'(',bstd,')')
#for key, val in checkpoint.iteritems():
# print(key)