-
Notifications
You must be signed in to change notification settings - Fork 0
/
project_euler_Q18.py
68 lines (55 loc) · 1.6 KB
/
project_euler_Q18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
'''
Q 18 Maximum path sum I
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
[3]
[7] 4
2 [4] 6
8 5 [9] 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
'''
# =====================================================
import time
Triangle = '''
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
'''
def comp():
triangle = [[int(y) for y in x.split()] for x in Triangle.split('\n')[1: -1]]
for i in range(13,-1,-1):
for j in range(len(triangle[i])):
triangle[i][j] += max(triangle[i+1][j], triangle[i+1][j+1])
return triangle[i][j]
if __name__ in "__main__":
start = time.process_time()
print(comp())
print(f"----- process time : {time.process_time() - start} seconds -----")
# ----- process time : 8.100000000000121e-05 seconds -----