forked from kornia/kornia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
316 lines (244 loc) · 10.2 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import sys
from functools import partial
from itertools import product
import numpy as np
import pytest
import torch
import kornia
from kornia.utils._compat import torch_version
try:
import torch._dynamo
_backends_non_experimental = torch._dynamo.list_backends()
except ImportError:
_backends_non_experimental = []
WEIGHTS_CACHE_DIR = "weights/"
def get_test_devices() -> dict[str, torch.device]:
"""Create a dictionary with the devices to test the source code.
CUDA devices will be test only in case the current hardware supports it.
Return:
dict(str, torch.device): list with devices names.
"""
devices: dict[str, torch.device] = {}
devices["cpu"] = torch.device("cpu")
if torch.cuda.is_available():
devices["cuda"] = torch.device("cuda:0")
if kornia.xla_is_available():
import torch_xla.core.xla_model as xm
devices["tpu"] = xm.xla_device()
if hasattr(torch.backends, "mps"):
if torch.backends.mps.is_available():
devices["mps"] = torch.device("mps")
return devices
def get_test_dtypes() -> dict[str, torch.dtype]:
"""Create a dictionary with the dtypes the source code.
Return:
dict(str, torch.dtype): list with dtype names.
"""
dtypes: dict[str, torch.dtype] = {}
dtypes["bfloat16"] = torch.bfloat16
dtypes["float16"] = torch.float16
dtypes["float32"] = torch.float32
dtypes["float64"] = torch.float64
return dtypes
# setup the devices to test the source code
TEST_DEVICES: dict[str, torch.device] = get_test_devices()
TEST_DTYPES: dict[str, torch.dtype] = get_test_dtypes()
TEST_OPTIMIZER_BACKEND = {"", None, "jit", *_backends_non_experimental}
# Combinations of device and dtype to be excluded from testing.
# DEVICE_DTYPE_BLACKLIST = {('cpu', 'float16')}
DEVICE_DTYPE_BLACKLIST = {}
@pytest.fixture()
def device(device_name) -> torch.device:
return TEST_DEVICES[device_name]
@pytest.fixture()
def dtype(dtype_name) -> torch.dtype:
return TEST_DTYPES[dtype_name]
@pytest.fixture()
def torch_optimizer(optimizer_backend):
if not optimizer_backend:
return lambda x: x
if optimizer_backend == "jit":
return torch.jit.script
if hasattr(torch, "compile") and sys.platform == "linux":
if (not (sys.version_info[:2] == (3, 11) and torch_version() in {"2.0.0", "2.0.1"})) and (
not sys.version_info[:2] == (3, 12)
):
# torch compile don't have support for python3.12 yet
torch._dynamo.reset()
# torch compile just have support for python 3.11 after torch 2.1.0
return partial(
torch.compile, backend=optimizer_backend
) # TODO: explore the others parameters of torch compile
pytest.skip(f"skipped because {torch.__version__} not have `compile` available! Failed to setup dynamo.")
def pytest_generate_tests(metafunc):
device_names = None
dtype_names = None
optimizer_backends_names = None
if "device_name" in metafunc.fixturenames:
raw_value = metafunc.config.getoption("--device")
if raw_value == "all":
device_names = list(TEST_DEVICES.keys())
else:
device_names = raw_value.split(",")
if "dtype_name" in metafunc.fixturenames:
raw_value = metafunc.config.getoption("--dtype")
if raw_value == "all":
dtype_names = list(TEST_DTYPES.keys())
else:
dtype_names = raw_value.split(",")
if "optimizer_backend" in metafunc.fixturenames:
raw_value = metafunc.config.getoption("--optimizer")
if raw_value == "all":
optimizer_backends_names = TEST_OPTIMIZER_BACKEND
else:
optimizer_backends_names = raw_value.split(",")
if device_names is not None and dtype_names is not None and optimizer_backends_names is not None:
# Exclude any blacklisted device/dtype combinations.
params = [
combo
for combo in product(device_names, dtype_names, optimizer_backends_names)
if combo not in DEVICE_DTYPE_BLACKLIST
]
metafunc.parametrize("device_name,dtype_name,optimizer_backend", params)
elif device_names is not None and dtype_names is not None and optimizer_backends_names is None:
# Exclude any blacklisted device/dtype combinations.
params = [combo for combo in product(device_names, dtype_names) if combo not in DEVICE_DTYPE_BLACKLIST]
metafunc.parametrize("device_name,dtype_name", params)
elif device_names is not None and dtype_names is None and optimizer_backends_names is not None:
params = product(device_names, optimizer_backends_names)
metafunc.parametrize("device_name,optimizer_backend", params)
elif device_names is not None:
metafunc.parametrize("device_name", device_names)
elif dtype_names is not None:
metafunc.parametrize("dtype_name", dtype_names)
elif optimizer_backends_names is not None:
metafunc.parametrize("optimizer_backend", optimizer_backends_names)
def pytest_collection_modifyitems(config, items):
if config.getoption("--runslow"):
# --runslow given in cli: do not skip slow tests
return
skip_slow = pytest.mark.skip(reason="need --runslow option to run")
for item in items:
if "slow" in item.keywords:
item.add_marker(skip_slow)
def pytest_addoption(parser):
parser.addoption("--device", action="store", default="cpu")
parser.addoption("--dtype", action="store", default="float32")
parser.addoption("--optimizer", action="store", default="inductor")
parser.addoption("--runslow", action="store_true", default=False, help="run slow tests")
def _setup_torch_compile():
if hasattr(torch, "compile") and sys.platform == "linux":
print("Setting up torch compile...")
torch.set_float32_matmul_precision("high")
def _dummy_function(x, y):
return (x + y).sum()
class _dummy_module(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return (x**2).sum()
torch.compile(_dummy_function)
torch.compile(_dummy_module())
def pytest_sessionstart(session):
try:
_setup_torch_compile()
except RuntimeError as ex:
if "not yet supported for torch.compile" not in str(
ex
) and "Dynamo is not supported on Python 3.12+" not in str(ex):
raise ex
os.makedirs(WEIGHTS_CACHE_DIR, exist_ok=True)
torch.hub.set_dir(WEIGHTS_CACHE_DIR)
# For HuggingFace model caching
os.environ["HF_HOME"] = WEIGHTS_CACHE_DIR
def _get_env_info() -> dict[str, dict[str, str]]:
if not hasattr(torch.utils, "collect_env"):
return {}
run_lmb = torch.utils.collect_env.run
separator = ":"
br = "\n"
def _get_key_value(v: str):
parts = v.split(separator)
return parts[0].strip(), parts[-1].strip()
def _get_cpu_info() -> dict[str, str]:
cpu_info = {}
cpu_str = torch.utils.collect_env.get_cpu_info(run_lmb)
if not cpu_str:
return {}
for data in cpu_str.split(br):
key, value = _get_key_value(data)
cpu_info[key] = value
return cpu_info
def _get_gpu_info() -> dict[str, str]:
gpu_info = {}
gpu_str = torch.utils.collect_env.get_gpu_info(run_lmb)
if not gpu_str:
return {}
for data in gpu_str.split(br):
key, value = _get_key_value(data)
gpu_info[key] = value
return gpu_info
return {
"cpu": _get_cpu_info(),
"gpu": _get_gpu_info(),
"nvidia": torch.utils.collect_env.get_nvidia_driver_version(run_lmb),
"gcc": torch.utils.collect_env.get_gcc_version(run_lmb),
}
def pytest_report_header(config):
try:
import accelerate
accelerate_info = f"accelerate-{accelerate.__version__}"
except ImportError:
accelerate_info = "`accelerate` not found"
import kornia_rs
import onnx
env_info = _get_env_info()
CACHED_WEIGTHS = os.listdir(WEIGHTS_CACHE_DIR)
if "cpu" in env_info:
desired_cpu_info = ["Model name", "Architecture", "CPU(s)", "Thread(s) per core", "CPU max MHz", "CPU min MHz"]
cpu_info = "cpu info:\n" + "\n".join(
f'\t- {i}: {env_info["cpu"][i]}' for i in desired_cpu_info if i in env_info["cpu"]
)
else:
cpu_info = ""
gpu_info = f"gpu info: {env_info['gpu']}" if "gpu" in env_info else ""
gcc_info = f"gcc info: {env_info['gcc']}" if "gcc" in env_info else ""
return f"""
{cpu_info}
{gpu_info}
main deps:
- kornia-{kornia.__version__}
- torch-{torch.__version__}
- commit: {torch.version.git_version}
- cuda: {torch.version.cuda}
- nvidia-driver: {env_info['nvidia'] if 'nvidia' in env_info else None}
x deps:
- {accelerate_info}
dev deps:
- kornia_rs-{kornia_rs.__version__}
- onnx-{onnx.__version__}
{gcc_info}
available optimizers: {TEST_OPTIMIZER_BACKEND}
model weights cached: {CACHED_WEIGTHS}
"""
@pytest.fixture(autouse=True)
def add_doctest_deps(doctest_namespace):
doctest_namespace["np"] = np
doctest_namespace["torch"] = torch
doctest_namespace["kornia"] = kornia
# the commit hash for the data version
sha: str = "cb8f42bf28b9f347df6afba5558738f62a11f28a"
sha2: str = "f7d8da661701424babb64850e03c5e8faec7ea62"
sha3: str = "8b98f44abbe92b7a84631ed06613b08fee7dae14"
@pytest.fixture(scope="session")
def data(request):
url = {
"loftr_homo": f"https://github.com/kornia/data_test/blob/{sha}/loftr_outdoor_and_homography_data.pt?raw=true",
"loftr_fund": f"https://github.com/kornia/data_test/blob/{sha}/loftr_indoor_and_fundamental_data.pt?raw=true",
"adalam_idxs": f"https://github.com/kornia/data_test/blob/{sha2}/adalam_test.pt?raw=true",
"lightglue_idxs": f"https://github.com/kornia/data_test/blob/{sha2}/adalam_test.pt?raw=true",
"disk_outdoor": f"https://github.com/kornia/data_test/blob/{sha3}/knchurch_disk.pt?raw=true",
"dexined": "https://cmp.felk.cvut.cz/~mishkdmy/models/DexiNed_BIPED_10.pth",
}
return torch.hub.load_state_dict_from_url(url[request.param], map_location=torch.device("cpu"))