Skip to content

Latest commit

 

History

History
12 lines (9 loc) · 752 Bytes

README.md

File metadata and controls

12 lines (9 loc) · 752 Bytes

B-MOD

Models from paper M. Kišš, M. Hradiš, and O. Kodym, “Brno Mobile OCR Dataset” in 2019 15th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2019. (arxiv)

We also provide a python script for transcribing text lines with our proposed networks. The script runs with parameters specifying directory with image to transcribe and also used network. For example

python3 transcribe.py --input-dir=/tmp/my_dir/ --net=LSTM

transcribes all .jpg and .png files in /tmp/my_dir/ using neural network with recurrent layers (network stored in lstm_net/). If you want to transcribe lines using netowrk without recurrent layers, use --net=CONV parameter instead.