forked from DBO-DKFZ/wsi_preprocessing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tissue_detection.py
40 lines (28 loc) · 1.2 KB
/
tissue_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import copy
import cv2
import matplotlib.pyplot as plt
import numpy as np
def tissue_detection(img, remove_top_border: bool = False):
kernel_size = 3
# remove alpha channel
img = img[:, :, 0:3]
if remove_top_border:
top_border = int(len(img) / 5)
# hack for removing border artifacts
img[0:top_border, :, :] = [0, 0, 0]
# remove black background pixel
black_px = np.where((img[:, :, 0] <= 5) & (img[:, :, 1] <= 5) & (img[:, :, 2] <= 5))
img[black_px] = [255, 255, 255]
# apply median filter to remove artifacts created by transitions to background pixels
median_filtered_img = cv2.medianBlur(img, 11)
# convert to HSV color space
hsv_image = cv2.cvtColor(median_filtered_img, cv2.COLOR_RGB2HSV)
# get saturation channel
saturation = hsv_image[:, :, 1]
# Otsu's thresholding
_, threshold_image = cv2.threshold(saturation, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# apply dilation to image to close spots inside mask regions
kernel = np.ones(shape=(kernel_size, kernel_size))
tissue_mask = cv2.dilate(threshold_image, kernel, iterations=1)
# tissue_mask = cv2.erode(tissue_mask, kernel)
return tissue_mask