-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathrun.py
executable file
·654 lines (550 loc) · 24.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#!/usr/bin/env python
import functools
import logging
import os
import subprocess
from argparse import ArgumentParser, Action
from collections import OrderedDict
import sys
from pandas import DataFrame
import numpy
import time
import theano
from theano.tensor.type import TensorType
from blocks.algorithms import GradientDescent, Adam
from blocks.extensions import FinishAfter
from blocks.extensions.monitoring import TrainingDataMonitoring
from blocks.filter import VariableFilter
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.roles import PARAMETER
from fuel.datasets import MNIST, CIFAR10
from fuel.schemes import ShuffledScheme, SequentialScheme
from fuel.streams import DataStream
from fuel.transformers import Transformer
from picklable_itertools import cycle, imap
from itertools import izip, product, tee
logger = logging.getLogger('main')
from utils import ShortPrinting, prepare_dir, load_df, DummyLoop
from utils import SaveExpParams, SaveLog, SaveParams, AttributeDict
from nn import ZCA, ContrastNorm
from nn import ApproxTestMonitoring, FinalTestMonitoring, TestMonitoring
from nn import LRDecay
from ladder import LadderAE
class Whitening(Transformer):
""" Makes a copy of the examples in the underlying dataset and whitens it
if necessary.
"""
def __init__(self, data_stream, iteration_scheme, whiten, cnorm=None,
**kwargs):
super(Whitening, self).__init__(data_stream,
iteration_scheme=iteration_scheme,
**kwargs)
data = data_stream.get_data(slice(data_stream.dataset.num_examples))
self.data = []
for s, d in zip(self.sources, data):
if 'features' == s:
# Fuel provides Cifar in uint8, convert to float32
d = numpy.require(d, dtype=numpy.float32)
if cnorm is not None:
d = cnorm.apply(d)
if whiten is not None:
d = whiten.apply(d)
self.data += [d]
elif 'targets' == s:
d = unify_labels(d)
self.data += [d]
else:
raise Exception("Unsupported Fuel target: %s" % s)
def get_data(self, request=None):
return (s[request] for s in self.data)
class SemiDataStream(Transformer):
""" Combines two datastreams into one such that 'target' source (labels)
is used only from the first one. The second one is renamed
to avoid collision. Upon iteration, the first one is repeated until
the second one depletes.
"""
def __init__(self, data_stream_labeled, data_stream_unlabeled, **kwargs):
super(Transformer, self).__init__(**kwargs)
self.ds_labeled = data_stream_labeled
self.ds_unlabeled = data_stream_unlabeled
# Rename the sources for clarity
self.ds_labeled.sources = ('features_labeled', 'targets_labeled')
# Rename the source for input pixels and hide its labels!
self.ds_unlabeled.sources = ('features_unlabeled',)
@property
def sources(self):
if hasattr(self, '_sources'):
return self._sources
return self.ds_labeled.sources + self.ds_unlabeled.sources
@sources.setter
def sources(self, value):
self._sources = value
def close(self):
self.ds_labeled.close()
self.ds_unlabeled.close()
def reset(self):
self.ds_labeled.reset()
self.ds_unlabeled.reset()
def next_epoch(self):
self.ds_labeled.next_epoch()
self.ds_unlabeled.next_epoch()
def get_epoch_iterator(self, **kwargs):
unlabeled = self.ds_unlabeled.get_epoch_iterator(**kwargs)
labeled = self.ds_labeled.get_epoch_iterator(**kwargs)
assert type(labeled) == type(unlabeled)
return imap(self.mergedicts, cycle(labeled), unlabeled)
def mergedicts(self, x, y):
return dict(list(x.items()) + list(y.items()))
def unify_labels(y):
""" Work-around for Fuel bug where MNIST and Cifar-10
datasets have different dimensionalities for the targets:
e.g. (50000, 1) vs (60000,) """
yshape = y.shape
y = y.flatten()
assert y.shape[0] == yshape[0]
return y
def make_datastream(dataset, indices, batch_size,
n_labeled=None, n_unlabeled=None,
balanced_classes=True, whiten=None, cnorm=None,
scheme=ShuffledScheme):
if n_labeled is None or n_labeled == 0:
n_labeled = len(indices)
if batch_size is None:
batch_size = len(indices)
if n_unlabeled is None:
n_unlabeled = len(indices)
assert n_labeled <= n_unlabeled, 'need less labeled than unlabeled'
if balanced_classes and n_labeled < n_unlabeled:
# Ensure each label is equally represented
logger.info('Balancing %d labels...' % n_labeled)
all_data = dataset.data_sources[dataset.sources.index('targets')]
y = unify_labels(all_data)[indices]
n_classes = y.max() + 1
assert n_labeled % n_classes == 0
n_from_each_class = n_labeled / n_classes
i_labeled = []
for c in range(n_classes):
i = (indices[y == c])[:n_from_each_class]
i_labeled += list(i)
else:
i_labeled = indices[:n_labeled]
# Get unlabeled indices
i_unlabeled = indices[:n_unlabeled]
ds = SemiDataStream(
data_stream_labeled=Whitening(
DataStream(dataset),
iteration_scheme=scheme(i_labeled, batch_size),
whiten=whiten, cnorm=cnorm),
data_stream_unlabeled=Whitening(
DataStream(dataset),
iteration_scheme=scheme(i_unlabeled, batch_size),
whiten=whiten, cnorm=cnorm)
)
return ds
def setup_model(p):
ladder = LadderAE(p)
# Setup inputs
input_type = TensorType('float32', [False] * (len(p.encoder_layers[0]) + 1))
x_only = input_type('features_unlabeled')
x = input_type('features_labeled')
y = theano.tensor.lvector('targets_labeled')
ladder.apply(x, y, x_only)
# Load parameters if requested
if p.get('load_from'):
with open(p.load_from + '/trained_params.npz') as f:
loaded = numpy.load(f)
cg = ComputationGraph([ladder.costs.total])
current_params = VariableFilter(roles=[PARAMETER])(cg.variables)
logger.info('Loading parameters: %s' % ', '.join(loaded.keys()))
for param in current_params:
assert param.get_value().shape == loaded[param.name].shape
param.set_value(loaded[param.name])
return ladder
def load_and_log_params(cli_params):
cli_params = AttributeDict(cli_params)
if cli_params.get('load_from'):
p = load_df(cli_params.load_from, 'params').to_dict()[0]
p = AttributeDict(p)
for key in cli_params.iterkeys():
if key not in p:
p[key] = None
new_params = cli_params
loaded = True
else:
p = cli_params
new_params = {}
loaded = False
# Make dseed seed unless specified explicitly
if p.get('dseed') is None and p.get('seed') is not None:
p['dseed'] = p['seed']
logger.info('== COMMAND LINE ==')
logger.info(' '.join(sys.argv))
logger.info('== PARAMETERS ==')
for k, v in p.iteritems():
if new_params.get(k) is not None:
p[k] = new_params[k]
replace_str = "<- " + str(new_params.get(k))
else:
replace_str = ""
logger.info(" {:20}: {:<20} {}".format(k, v, replace_str))
return p, loaded
def setup_data(p, test_set=False):
dataset_class, training_set_size = {
'cifar10': (CIFAR10, 40000),
'mnist': (MNIST, 50000),
}[p.dataset]
# Allow overriding the default from command line
if p.get('unlabeled_samples') is not None:
training_set_size = p.unlabeled_samples
train_set = dataset_class(["train"])
# Make sure the MNIST data is in right format
if p.dataset == 'mnist':
d = train_set.data_sources[train_set.sources.index('features')]
assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
'Make sure data is in float format and in range 0 to 1'
# Take all indices and permutate them
all_ind = numpy.arange(train_set.num_examples)
if p.get('dseed'):
rng = numpy.random.RandomState(seed=p.dseed)
rng.shuffle(all_ind)
d = AttributeDict()
# Choose the training set
d.train = train_set
d.train_ind = all_ind[:training_set_size]
# Then choose validation set from the remaining indices
d.valid = train_set
d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
logger.info('Using %d examples for validation' % len(d.valid_ind))
# Only touch test data if requested
if test_set:
d.test = dataset_class(["test"])
d.test_ind = numpy.arange(d.test.num_examples)
# Setup optional whitening, only used for Cifar-10
in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
if len(in_dim) > 1 and p.whiten_zca > 0:
assert numpy.product(in_dim) == p.whiten_zca, \
'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
p.whiten_zca)
cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None
def get_data(d, i):
data = d.get_data(request=list(i))[d.sources.index('features')]
# Fuel provides Cifar in uint8, convert to float32
data = numpy.require(data, dtype=numpy.float32)
return data if cnorm is None else cnorm.apply(data)
if p.whiten_zca > 0:
logger.info('Whitening using %d ZCA components' % p.whiten_zca)
whiten = ZCA()
whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
else:
whiten = None
return in_dim, d, whiten, cnorm
def get_error(args):
""" Calculate the classification error """
args['data_type'] = args.get('data_type', 'test')
args['no_load'] = 'g_'
targets, acts = analyze(args)
guess = numpy.argmax(acts, axis=1)
correct = numpy.sum(numpy.equal(guess, targets.flatten()))
return (1. - correct / float(len(guess))) * 100.
def analyze(cli_params):
p, _ = load_and_log_params(cli_params)
_, data, whiten, cnorm = setup_data(p, test_set=True)
ladder = setup_model(p)
# Analyze activations
dset, indices, calc_batchnorm = {
'train': (data.train, data.train_ind, False),
'valid': (data.valid, data.valid_ind, True),
'test': (data.test, data.test_ind, True),
}[p.data_type]
if calc_batchnorm:
logger.info('Calculating batch normalization for clean.labeled path')
main_loop = DummyLoop(
extensions=[
FinalTestMonitoring(
[ladder.costs.class_clean, ladder.error.clean]
+ ladder.costs.denois.values(),
make_datastream(data.train, data.train_ind,
# These need to match with the training
p.batch_size,
n_labeled=p.labeled_samples,
n_unlabeled=len(data.train_ind),
cnorm=cnorm,
whiten=whiten, scheme=ShuffledScheme),
make_datastream(data.valid, data.valid_ind,
p.valid_batch_size,
n_labeled=len(data.valid_ind),
n_unlabeled=len(data.valid_ind),
cnorm=cnorm,
whiten=whiten, scheme=ShuffledScheme),
prefix="valid_final", before_training=True),
ShortPrinting({
"valid_final": OrderedDict([
('VF_C_class', ladder.costs.class_clean),
('VF_E', ladder.error.clean),
('VF_C_de', [ladder.costs.denois.get(0),
ladder.costs.denois.get(1),
ladder.costs.denois.get(2),
ladder.costs.denois.get(3)]),
]),
}, after_training=True, use_log=False),
])
main_loop.run()
# Make a datastream that has all the indices in the labeled pathway
ds = make_datastream(dset, indices,
batch_size=p.get('batch_size'),
n_labeled=len(indices),
n_unlabeled=len(indices),
balanced_classes=False,
whiten=whiten,
cnorm=cnorm,
scheme=SequentialScheme)
# We want out the values after softmax
outputs = ladder.act.clean.labeled.h[len(ladder.layers) - 1]
# Replace the batch normalization paramameters with the shared variables
if calc_batchnorm:
outputreplacer = TestMonitoring()
_, _, outputs = outputreplacer._get_bn_params(outputs)
cg = ComputationGraph(outputs)
f = cg.get_theano_function()
it = ds.get_epoch_iterator(as_dict=True)
res = []
inputs = {'features_labeled': [],
'targets_labeled': [],
'features_unlabeled': []}
# Loop over one epoch
for d in it:
# Store all inputs
for k, v in d.iteritems():
inputs[k] += [v]
# Store outputs
res += [f(*[d[str(inp)] for inp in cg.inputs])]
# Concatenate all minibatches
res = [numpy.vstack(minibatches) for minibatches in zip(*res)]
inputs = {k: numpy.vstack(v) for k, v in inputs.iteritems()}
return inputs['targets_labeled'], res[0]
def train(cli_params):
cli_params['save_dir'] = prepare_dir(cli_params['save_to'])
logfile = os.path.join(cli_params['save_dir'], 'log.txt')
# Log also DEBUG to a file
fh = logging.FileHandler(filename=logfile)
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
logger.info('Logging into %s' % logfile)
p, loaded = load_and_log_params(cli_params)
in_dim, data, whiten, cnorm = setup_data(p, test_set=False)
if not loaded:
# Set the zero layer to match input dimensions
p.encoder_layers = (in_dim,) + p.encoder_layers
ladder = setup_model(p)
# Training
all_params = ComputationGraph([ladder.costs.total]).parameters
logger.info('Found the following parameters: %s' % str(all_params))
# Fetch all batch normalization updates. They are in the clean path.
bn_updates = ComputationGraph([ladder.costs.class_clean]).updates
assert 'counter' in [u.name for u in bn_updates.keys()], \
'No batch norm params in graph - the graph has been cut?'
training_algorithm = GradientDescent(
cost=ladder.costs.total, parameters=all_params,
step_rule=Adam(learning_rate=ladder.lr))
# In addition to actual training, also do BN variable approximations
training_algorithm.add_updates(bn_updates)
short_prints = {
"train": {
'T_C_class': ladder.costs.class_corr,
'T_C_de': ladder.costs.denois.values(),
},
"valid_approx": OrderedDict([
('V_C_class', ladder.costs.class_clean),
('V_E', ladder.error.clean),
('V_C_de', ladder.costs.denois.values()),
]),
"valid_final": OrderedDict([
('VF_C_class', ladder.costs.class_clean),
('VF_E', ladder.error.clean),
('VF_C_de', ladder.costs.denois.values()),
]),
}
main_loop = MainLoop(
training_algorithm,
# Datastream used for training
make_datastream(data.train, data.train_ind,
p.batch_size,
n_labeled=p.labeled_samples,
n_unlabeled=p.unlabeled_samples,
whiten=whiten,
cnorm=cnorm),
model=Model(ladder.costs.total),
extensions=[
FinishAfter(after_n_epochs=p.num_epochs),
# This will estimate the validation error using
# running average estimates of the batch normalization
# parameters, mean and variance
ApproxTestMonitoring(
[ladder.costs.class_clean, ladder.error.clean]
+ ladder.costs.denois.values(),
make_datastream(data.valid, data.valid_ind,
p.valid_batch_size, whiten=whiten, cnorm=cnorm,
scheme=ShuffledScheme),
prefix="valid_approx"),
# This Monitor is slower, but more accurate since it will first
# estimate batch normalization parameters from training data and
# then do another pass to calculate the validation error.
FinalTestMonitoring(
[ladder.costs.class_clean, ladder.error.clean]
+ ladder.costs.denois.values(),
make_datastream(data.train, data.train_ind,
p.batch_size,
n_labeled=p.labeled_samples,
whiten=whiten, cnorm=cnorm,
scheme=ShuffledScheme),
make_datastream(data.valid, data.valid_ind,
p.valid_batch_size,
n_labeled=len(data.valid_ind),
whiten=whiten, cnorm=cnorm,
scheme=ShuffledScheme),
prefix="valid_final",
after_n_epochs=p.num_epochs),
TrainingDataMonitoring(
[ladder.costs.total, ladder.costs.class_corr,
training_algorithm.total_gradient_norm]
+ ladder.costs.denois.values(),
prefix="train", after_epoch=True),
SaveParams(None, all_params, p.save_dir, after_epoch=True),
SaveExpParams(p, p.save_dir, before_training=True),
SaveLog(p.save_dir, after_training=True),
ShortPrinting(short_prints),
LRDecay(ladder.lr, p.num_epochs * p.lrate_decay, p.num_epochs,
after_epoch=True),
])
main_loop.run()
# Get results
df = DataFrame.from_dict(main_loop.log, orient='index')
col = 'valid_final_error_rate_clean'
logger.info('%s %g' % (col, df[col].iloc[-1]))
if main_loop.log.status['epoch_interrupt_received']:
return None
return df
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
rep = lambda s: s.replace('-', ',')
chop = lambda s: s.split(',')
to_int = lambda ss: [int(s) for s in ss if s.isdigit()]
to_float = lambda ss: [float(s) for s in ss]
def to_bool(s):
if s.lower() in ['true', 't']:
return True
elif s.lower() in ['false', 'f']:
return False
else:
raise Exception("Unknown bool value %s" % s)
def compose(*funs):
return functools.reduce(lambda f, g: lambda x: f(g(x)), funs)
# Functional parsing logic to allow flexible function compositions
# as actions for ArgumentParser
def funcs(additional_arg):
class customAction(Action):
def __call__(self, parser, args, values, option_string=None):
def process(arg, func_list):
if arg is None:
return None
elif type(arg) is list:
return map(compose(*func_list), arg)
else:
return compose(*func_list)(arg)
setattr(args, self.dest, process(values, additional_arg))
return customAction
def add_train_params(parser, use_defaults):
a = parser.add_argument
default = lambda x: x if use_defaults else None
# General hyper parameters and settings
a("save_to", help="Destination to save the state and results",
default=default("noname"), nargs="?")
a("--num-epochs", help="Number of training epochs",
type=int, default=default(150))
a("--seed", help="Seed",
type=int, default=default([1]), nargs='+')
a("--dseed", help="Data permutation seed, defaults to 'seed'",
type=int, default=default([None]), nargs='+')
a("--labeled-samples", help="How many supervised samples are used",
type=int, default=default(None), nargs='+')
a("--unlabeled-samples", help="How many unsupervised samples are used",
type=int, default=default(None), nargs='+')
a("--dataset", type=str, default=default(['mnist']), nargs='+',
choices=['mnist', 'cifar10'], help="Which dataset to use")
a("--lr", help="Initial learning rate",
type=float, default=default([0.002]), nargs='+')
a("--lrate-decay", help="When to linearly start decaying lrate (0-1)",
type=float, default=default([0.67]), nargs='+')
a("--batch-size", help="Minibatch size",
type=int, default=default([100]), nargs='+')
a("--valid-batch-size", help="Minibatch size for validation data",
type=int, default=default([100]), nargs='+')
a("--valid-set-size", help="Number of examples in validation set",
type=int, default=default([10000]), nargs='+')
# Hyperparameters controlling supervised path
a("--super-noise-std", help="Noise added to supervised learning path",
type=float, default=default([0.3]), nargs='+')
a("--f-local-noise-std", help="Noise added encoder path",
type=str, default=default([0.3]), nargs='+',
action=funcs([tuple, to_float, chop]))
a("--act", nargs='+', type=str, action=funcs([tuple, chop, rep]),
default=default(["relu"]), help="List of activation functions")
a("--encoder-layers", help="List of layers for f",
type=str, default=default(()), action=funcs([tuple, chop, rep]))
# Hyperparameters controlling unsupervised training
a("--denoising-cost-x", help="Weight of the denoising cost.",
type=str, default=default([(0.,)]), nargs='+',
action=funcs([tuple, to_float, chop]))
a("--decoder-spec", help="List of decoding function types", nargs='+',
type=str, default=default(['sig']), action=funcs([tuple, chop, rep]))
a("--zestbn", type=str, default=default(['bugfix']), nargs='+',
choices=['bugfix', 'no'], help="How to do zest bn")
# Hyperparameters used for Cifar training
a("--contrast-norm", help="Scale of contrast normalization (0=off)",
type=int, default=default([0]), nargs='+')
a("--top-c", help="Have c at softmax?", action=funcs([to_bool]),
default=default([True]), nargs='+')
a("--whiten-zca", help="Whether to whiten the data with ZCA",
type=int, default=default([0]), nargs='+')
ap = ArgumentParser("Semisupervised experiment")
subparsers = ap.add_subparsers(dest='cmd', help='sub-command help')
# TRAIN
train_cmd = subparsers.add_parser('train', help='Train a new model')
add_train_params(train_cmd, use_defaults=True)
# EVALUATE
load_cmd = subparsers.add_parser('evaluate', help='Evaluate test error')
load_cmd.add_argument('load_from', type=str,
help="Destination to load the state from")
load_cmd.add_argument('--data-type', type=str, default='test',
help="Data set to evaluate on")
args = ap.parse_args()
subp = subprocess.Popen(['git', 'rev-parse', 'HEAD'],
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
out, err = subp.communicate()
args.commit = out.strip()
if err.strip():
logger.error('Subprocess returned %s' % err.strip())
t_start = time.time()
if args.cmd == 'evaluate':
for k, v in vars(args).iteritems():
if type(v) is list:
assert len(v) == 1, "should not be a list when loading: %s" % k
logger.info("%s" % str(v[0]))
vars(args)[k] = v[0]
err = get_error(vars(args))
logger.info('Test error: %f' % err)
elif args.cmd == "train":
listdicts = {k: v for k, v in vars(args).iteritems() if type(v) is list}
therest = {k: v for k, v in vars(args).iteritems() if type(v) is not list}
gen1, gen2 = tee(product(*listdicts.itervalues()))
l = len(list(gen1))
for i, d in enumerate(dict(izip(listdicts, x)) for x in gen2):
if l > 1:
logger.info('Training configuration %d / %d' % (i+1, l))
d.update(therest)
if train(d) is None:
break
logger.info('Took %.1f minutes' % ((time.time() - t_start) / 60.))