forked from shelhamer/fcn.berkeleyvision.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnyud_layers.py
156 lines (130 loc) · 5.13 KB
/
nyud_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import caffe
import numpy as np
from PIL import Image
import scipy.io
import random
class NYUDSegDataLayer(caffe.Layer):
"""
Load (input image, label image) pairs from NYUDv2
one-at-a-time while reshaping the net to preserve dimensions.
The labels follow the 40 class task defined by
S. Gupta, R. Girshick, p. Arbelaez, and J. Malik. Learning rich features
from RGB-D images for object detection and segmentation. ECCV 2014.
with 0 as the void label and 1-40 the classes.
Use this to feed data to a fully convolutional network.
"""
def setup(self, bottom, top):
"""
Setup data layer according to parameters:
- nyud_dir: path to NYUDv2 dir
- split: train / val / test
- tops: list of tops to output from {color, depth, hha, label}
- randomize: load in random order (default: True)
- seed: seed for randomization (default: None / current time)
for NYUDv2 semantic segmentation.
example: params = dict(nyud_dir="/path/to/NYUDVOC2011", split="val",
tops=['color', 'hha', 'label'])
"""
# config
params = eval(self.param_str)
self.nyud_dir = params['nyud_dir']
self.split = params['split']
self.tops = params['tops']
self.random = params.get('randomize', True)
self.seed = params.get('seed', None)
# store top data for reshape + forward
self.data = {}
# means
self.mean_bgr = np.array((116.190, 97.203, 92.318), dtype=np.float32)
self.mean_hha = np.array((132.431, 94.076, 118.477), dtype=np.float32)
self.mean_logd = np.array((7.844,), dtype=np.float32)
# tops: check configuration
if len(top) != len(self.tops):
raise Exception("Need to define {} tops for all outputs.")
# data layers have no bottoms
if len(bottom) != 0:
raise Exception("Do not define a bottom.")
# load indices for images and labels
split_f = '{}/{}.txt'.format(self.nyud_dir, self.split)
self.indices = open(split_f, 'r').read().splitlines()
self.idx = 0
# make eval deterministic
if 'train' not in self.split:
self.random = False
# randomization: seed and pick
if self.random:
random.seed(self.seed)
self.idx = random.randint(0, len(self.indices)-1)
def reshape(self, bottom, top):
# load data for tops and reshape tops to fit (1 is the batch dim)
for i, t in enumerate(self.tops):
self.data[t] = self.load(t, self.indices[self.idx])
top[i].reshape(1, *self.data[t].shape)
def forward(self, bottom, top):
# assign output
for i, t in enumerate(self.tops):
top[i].data[...] = self.data[t]
# pick next input
if self.random:
self.idx = random.randint(0, len(self.indices)-1)
else:
self.idx += 1
if self.idx == len(self.indices):
self.idx = 0
def backward(self, top, propagate_down, bottom):
pass
def load(self, top, idx):
if top == 'color':
return self.load_image(idx)
elif top == 'label':
return self.load_label(idx)
elif top == 'depth':
return self.load_depth(idx)
elif top == 'hha':
return self.load_hha(idx)
else:
raise Exception("Unknown output type: {}".format(top))
def load_image(self, idx):
"""
Load input image and preprocess for Caffe:
- cast to float
- switch channels RGB -> BGR
- subtract mean
- transpose to channel x height x width order
"""
im = Image.open('{}/data/images/img_{}.png'.format(self.nyud_dir, idx))
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= self.mean_bgr
in_ = in_.transpose((2,0,1))
return in_
def load_label(self, idx):
"""
Load label image as 1 x height x width integer array of label indices.
Shift labels so that classes are 0-39 and void is 255 (to ignore it).
The leading singleton dimension is required by the loss.
"""
label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['segmentation'].astype(np.uint8)
label -= 1 # rotate labels
label = label[np.newaxis, ...]
return label
def load_depth(self, idx):
"""
Load pre-processed depth for NYUDv2 segmentation set.
"""
im = Image.open('{}/data/depth/img_{}.png'.format(self.nyud_dir, idx))
d = np.array(im, dtype=np.float32)
d = np.log(d)
d -= self.mean_logd
d = d[np.newaxis, ...]
return d
def load_hha(self, idx):
"""
Load HHA features from Gupta et al. ECCV14.
See https://github.com/s-gupta/rcnn-depth/blob/master/rcnn/saveHHA.m
"""
im = Image.open('{}/data/hha/img_{}.png'.format(self.nyud_dir, idx))
hha = np.array(im, dtype=np.float32)
hha -= self.mean_hha
hha = hha.transpose((2,0,1))
return hha