-
Notifications
You must be signed in to change notification settings - Fork 0
/
like_fourier_desxplanck.c
821 lines (729 loc) · 31.8 KB
/
like_fourier_desxplanck.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
#include <math.h>
#include <stdlib.h>
#if !defined(__APPLE__)
#include <malloc.h>
#endif
#include <stdio.h>
#include <assert.h>
#include <time.h>
#include <string.h>
#include <fftw3.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_erf.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_sf_expint.h>
#include <gsl/gsl_deriv.h>
#include <gsl/gsl_interp2d.h>
#include <gsl/gsl_spline2d.h>
#include "../cosmolike_core/theory/basics.c"
#include "../cosmolike_core/theory/structs.c"
#include "../cosmolike_core/theory/parameters.c"
#include "../cosmolike_core/emu17/P_cb/emu.c"
#include "../cosmolike_core/theory/recompute.c"
#include "../cosmolike_core/theory/cosmo3D.c"
#include "../cosmolike_core/theory/redshift_spline.c"
#include "../cosmolike_core/theory/halo.c"
#include "../cosmolike_core/theory/HOD.c"
#include "../cosmolike_core/theory/pt.c"
#include "../cosmolike_core/theory/cosmo2D_fourier.c"
#include "../cosmolike_core/theory/IA.c"
#include "../cosmolike_core/theory/cluster.c"
#include "../cosmolike_core/theory/BAO.c"
#include "../cosmolike_core/theory/external_prior.c"
#include "../cosmolike_core/theory/init_baryon.c"
#include "init_DESxPlanck.c"
// Naming convention:
// g = galaxy positions ("g" as in "galaxy")
// k = kappa CMB ("k" as in "kappa")
// s = kappa from source galaxies ("s" as in "shear")
// And alphabetical order
typedef double (*C_tomo_pointer)(double l, int n1, int n2);
void twopoint_via_hankel(double **xi, double *logthetamin, double *logthetamax, C_tomo_pointer C_tomo, int ni, int nj, int N_Bessel);
#include "../cosmolike_core/theory/CMBxLSS_fourier.c"
typedef struct input_nuisance_params_des {
double bias[10];
// double bias2[10];
double b_mag[10];
double source_z_bias[10];
double lens_z_bias[10];
double shear_m[10];
double A_ia;
double eta_ia;
// double bary[3];
} input_nuisance_params_des;
typedef struct input_cosmo_params_des {
double omega_m;
double sigma_8;
double n_s;
double w0;
double wa;
double omega_b;
double h0;
double MGSigma;
double MGmu;
} input_cosmo_params_des;
double C_shear_tomo_sys(double ell,int z1,int z2);
double C_cgl_tomo_sys(double ell_Cluster,int zl,int nN, int zs);
double C_gl_tomo_sys(double ell,int zl,int zs);
double C_ks_sys(double ell, int zs);
void set_data_shear(int Ncl, double *ell, double *data, int start);
void set_data_ggl(int Ncl, double *ell, double *data, int start);
void set_data_clustering(int Ncl, double *ell, double *data, int start);
void set_data_gk(double *ell, double *data, int start);
void set_data_ks(double *ell, double *data, int start);
void set_data_kk(double *ell, double *data, int start);
void compute_data_vector(char *details, double OMM, double S8, double NS, double W0,double WA, double OMB, double H0, double MGSigma, double MGmu, double B1, double B2, double B3, double B4,double B5, double B6, double B7, double B8, double B9, double B10, double BMAG1, double BMAG2, double BMAG3, double BMAG4,double BMAG5, double BMAG6, double BMAG7, double BMAG8, double BMAG9, double BMAG10, double SP1, double SP2, double SP3, double SP4, double SP5,double SP6, double SP7, double SP8, double SP9, double SP10, double CP1, double CP2, double CP3, double CP4, double CP5, double CP6, double CP7, double CP8, double CP9, double CP10, double M1, double M2, double M3, double M4, double M5, double M6, double M7, double M8, double M9, double M10, double A_ia, double eta_ia);
double log_multi_like(double OMM, double S8, double NS, double W0,double WA, double OMB, double H0, double MGSigma, double MGmu, double B1, double B2, double B3, double B4,double B5, double B6, double B7, double B8, double B9, double B10, double BMAG1, double BMAG2, double BMAG3, double BMAG4,double BMAG5, double BMAG6, double BMAG7, double BMAG8, double BMAG9, double BMAG10, double SP1, double SP2, double SP3, double SP4, double SP5, double SP6, double SP7, double SP8, double SP9, double SP10, double CP1, double CP2, double CP3, double CP4, double CP5, double CP6, double CP7, double CP8, double CP9, double CP10, double M1, double M2, double M3, double M4, double M5, double M6, double M7, double M8, double M9, double M10, double A_ia, double eta_ia);
void write_datavector_wrapper(char *details, input_cosmo_params_des ic, input_nuisance_params_des in);
double log_like_wrapper(input_cosmo_params_des ic, input_nuisance_params_des in);
int get_N_tomo_shear(void);
int get_N_tomo_clustering(void);
int get_N_ggl(void);
int get_N_ell(void);
int get_N_tomo_shear(void){
return tomo.shear_Nbin;
}
int get_N_tomo_clustering(void){
return tomo.clustering_Nbin;
}
int get_N_ggl(void){
return tomo.ggl_Npowerspectra;
}
int get_N_ell(void){
return like.Ncl;
}
double C_shear_tomo_sys(double ell, int z1, int z2)
{
double C;
// C= C_shear_tomo_nointerp(ell,z1,z2);
// if(like.IA==1) C+=C_II_nointerp(ell,z1,z2)+C_GI_nointerp(ell,z1,z2);
// if(like.IA!=1) C= C_shear_tomo_nointerp(ell,z1,z2);
// //if(like.IA==1) C= C_shear_shear_IA(ell,z1,z2);
// if(like.IA==1) C = C_shear_tomo_nointerp(ell,z1,z2)+C_II_nointerp(ell,z1,z2)+C_GI_nointerp(ell,z1,z2);
// if(like.IA==2) C += C_II_lin_nointerp(ell,z1,z2)+C_GI_lin_nointerp(ell,z1,z2);
if(like.IA==4){C = C_shear_shear_IA_tab(ell,z1,z2);}
else{printf("only support IA==4!\n");exit(1);}
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[z1])*(1.0+nuisance.shear_calibration_m[z2]);
//printf("%le %d %d %le\n",ell,z1,z2,C_shear_tomo_nointerp(ell,z1,z2)+C_II_JB_nointerp(ell,z1,z2)+C_GI_JB_nointerp(ell,z1,z2));
return C;
}
double C_gl_tomo_sys(double ell,int zl,int zs)
{
double C;
// C=C_gl_tomo_nointerp(ell,zl,zs);
// if(like.IA==1) C += C_gI_nointerp(ell,zl,zs);
// if(like.IA!=1) C=C_gl_tomo_nointerp(ell,zl,zs);
// if(like.IA==1) C = C_ggl_IA(ell,zl,zs);
// if(like.IA==2) C += C_gI_lin_nointerp(ell,zl,zs);
if(like.IA==4){C = C_ggl_IA_tab(ell,zl,zs);}
else{printf("only support IA==4!\n");exit(1);}
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[zs]);
return C;
}
double C_cgl_tomo_sys(double ell_Cluster, int zl,int nN, int zs)
{
double C;
C=C_cgl_tomo_nointerp(ell_Cluster,zl,nN,zs);
//if(like.IA!=0) C +=
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[zs]);
return C;
}
double C_ks_sys(double ell, int zs)
{
double C;
C = C_ks(ell,zs);
if(like.shearcalib==1) C *=(1.0+nuisance.shear_calibration_m[zs]);
return C;
}
void set_data_shear(int Ncl, double *ell, double *data, int start)
{
int i,z1,z2,nz;
double a;
for (nz = 0; nz < tomo.shear_Npowerspectra; nz++){
z1 = Z1(nz); z2 = Z2(nz);
for (i = 0; i < Ncl; i++){
// if (ell[i] < like.lmax_shear){ data[Ncl*nz+i] = C_shear_tomo_sys(ell[i],z1,z2);}
if (mask(Ncl*nz+i)){ data[Ncl*nz+i] = C_shear_tomo_sys(ell[i],z1,z2);}
else {data[Ncl*nz+i] = 0.;}
}
}
}
void set_data_ggl(int Ncl, double *ell, double *data, int start)
{
int i, zl,zs,nz;
for (nz = 0; nz < tomo.ggl_Npowerspectra; nz++){
zl = ZL(nz); zs = ZS(nz);
for (i = 0; i < Ncl; i++){
// if (test_kmax(ell[i],zl)){
if (mask(start+(Ncl*nz)+i)){
data[start+(Ncl*nz)+i] = C_gl_tomo_sys(ell[i],zl,zs);
}
else{
data[start+(Ncl*nz)+i] = 0.;
}
}
}
}
void set_data_clustering(int Ncl, double *ell, double *data, int start){
int i, nz;
for (nz = 0; nz < tomo.clustering_Npowerspectra; nz++){
//printf("%d %e %e\n",nz, gbias.b[nz][1],pf_photoz(gbias.b[nz][1],nz));
for (i = 0; i < Ncl; i++){
// if (test_kmax(ell[i],nz))
if (mask(start+(Ncl*nz)+i)) {
data[start+(Ncl*nz)+i] = C_cl_tomo_nointerp(ell[i],nz,nz);
}
else{data[start+(Ncl*nz)+i] = 0.;}
//printf("%d %d %le %le\n",nz,nz,ell[i],data[Ncl*(tomo.shear_Npowerspectra+tomo.ggl_Npowerspectra + nz)+i]);
}
}
}
void set_data_gk(double *ell, double *data, int start)
{
for (int nz=0; nz<tomo.clustering_Nbin; nz++){
for (int i=0; i<like.Ncl; i++){
// if (ell[i]<like.lmax_kappacmb && test_kmax(ell[i],nz)){
if (mask(start+(like.Ncl*nz)+i)) {
data[start+(like.Ncl*nz)+i] = C_gk(ell[i],nz);
}
else{
data[start+(like.Ncl*nz)+i] = 0.;
}
}
}
}
void set_data_ks(double *ell, double *data, int start)
{
for (int nz=0; nz<tomo.shear_Nbin; nz++){
for (int i=0; i<like.Ncl; i++){
// if (ell[i]<like.lmax_kappacmb) {
if (mask(start+(like.Ncl*nz)+i)) {
data[start+(like.Ncl*nz)+i] = C_ks_sys(ell[i],nz);
}
else{
data[start+(like.Ncl*nz)+i] = 0.;
}
}
}
}
void set_data_kk(double *ell, double *data, int start)
{
for (int i=0; i<like.Ncl; i++){
// if (ell[i]<like.lmax_kappacmb){
if (mask(start+i)) {
data[start+i] = C_kk(ell[i]);
}
else{
data[start+i] = 0.;
}
}
}
int set_cosmology_params(double OMM, double S8, double NS, double W0,double WA, double OMB, double H0, double MGSigma, double MGmu)
{
cosmology.Omega_m=OMM;
cosmology.Omega_v= 1.0-cosmology.Omega_m;
cosmology.sigma_8=S8;
cosmology.n_spec= NS;
cosmology.w0=W0;
cosmology.wa=WA;
cosmology.omb=OMB;
cosmology.h0=H0;
cosmology.MGSigma=MGSigma;
cosmology.MGmu=MGmu;
if (cosmology.Omega_m < 0.05 || cosmology.Omega_m > 0.6) return 0;
if (cosmology.omb < 0.04 || cosmology.omb > 0.055) return 0;
if (cosmology.sigma_8 < 0.5 || cosmology.sigma_8 > 1.1) return 0;
if (cosmology.n_spec < 0.84 || cosmology.n_spec > 1.06) return 0;
if (cosmology.w0 < -2.1 || cosmology.w0 > -0.0) return 0;
if (cosmology.wa < -2.6 || cosmology.wa > 2.6) return 0;
if (cosmology.h0 < 0.4 || cosmology.h0 > 0.9) return 0;
//CH BEGINS
//CH: to use for running planck15_BA0_w0_wa prior alone)
//printf("like_fourier.c from WFIRST_forecasts: cosmology bounds set for running with planck15_BA0_w0_wa prior\n");
//if (cosmology.Omega_m < 0.05 || cosmology.Omega_m > 0.6) return 0;
//if (cosmology.omb < 0.01 || cosmology.omb > 0.1) return 0;
//if (cosmology.sigma_8 < 0.5 || cosmology.sigma_8 > 1.1) return 0;
//if (cosmology.n_spec < 0.84 || cosmology.n_spec > 1.06) return 0;
//if (cosmology.w0 < -2.1 || cosmology.w0 > 1.5) return 0;
//if (cosmology.wa < -5.0 || cosmology.wa > 2.6) return 0;
//if (cosmology.h0 < 0.3 || cosmology.h0 > 0.9) return 0;
//CH ENDS
return 1;
}
void set_nuisance_shear_calib(double M1, double M2, double M3, double M4, double M5, double M6, double M7, double M8, double M9, double M10)
{
nuisance.shear_calibration_m[0] = M1;
nuisance.shear_calibration_m[1] = M2;
nuisance.shear_calibration_m[2] = M3;
nuisance.shear_calibration_m[3] = M4;
nuisance.shear_calibration_m[4] = M5;
nuisance.shear_calibration_m[5] = M6;
nuisance.shear_calibration_m[6] = M7;
nuisance.shear_calibration_m[7] = M8;
nuisance.shear_calibration_m[8] = M9;
nuisance.shear_calibration_m[9] = M10;
}
int set_nuisance_shear_photoz(double SP1,double SP2,double SP3,double SP4,double SP5,double SP6,double SP7,double SP8,double SP9,double SP10)
{
int i;
nuisance.bias_zphot_shear[0]=SP1;
nuisance.bias_zphot_shear[1]=SP2;
nuisance.bias_zphot_shear[2]=SP3;
nuisance.bias_zphot_shear[3]=SP4;
nuisance.bias_zphot_shear[4]=SP5;
nuisance.bias_zphot_shear[5]=SP6;
nuisance.bias_zphot_shear[6]=SP7;
nuisance.bias_zphot_shear[7]=SP8;
nuisance.bias_zphot_shear[8]=SP9;
nuisance.bias_zphot_shear[9]=SP10;
// for (i=0;i<tomo.shear_Nbin; i++){
// nuisance.sigma_zphot_shear[i]=SPS1;
// if (nuisance.sigma_zphot_shear[i]<0.0001) return 0;
// }
return 1;
}
int set_nuisance_clustering_photoz(double CP1,double CP2,double CP3,double CP4,double CP5,double CP6,double CP7,double CP8,double CP9,double CP10)
{
int i;
nuisance.bias_zphot_clustering[0]=CP1;
nuisance.bias_zphot_clustering[1]=CP2;
nuisance.bias_zphot_clustering[2]=CP3;
nuisance.bias_zphot_clustering[3]=CP4;
nuisance.bias_zphot_clustering[4]=CP5;
nuisance.bias_zphot_clustering[5]=CP6;
nuisance.bias_zphot_clustering[6]=CP7;
nuisance.bias_zphot_clustering[7]=CP8;
nuisance.bias_zphot_clustering[8]=CP9;
nuisance.bias_zphot_clustering[9]=CP10;
// for (i=0;i<tomo.clustering_Nbin; i++){
// nuisance.sigma_zphot_clustering[i]=CPS1;
// if (nuisance.sigma_zphot_clustering[i]<0.0001) return 0;
// }
return 1;
}
int set_nuisance_ia(double A_ia, double eta_ia)
{
nuisance.A_ia=A_ia;
nuisance.eta_ia=eta_ia;
nuisance.oneplusz0_ia = 1.62;
if (nuisance.A_ia < 0.0 || nuisance.A_ia > 10.0) return 0;
if (nuisance.eta_ia < -10.0 || nuisance.eta_ia> 10.0) return 0;
return 1;
}
// int set_nuisance_ia(double A_ia, double beta_ia, double eta_ia, double eta_ia_highz, double LF_alpha, double LF_P, double LF_Q, double LF_red_alpha, double LF_red_P, double LF_red_Q)
// {
// nuisance.A_ia=A_ia;
// nuisance.beta_ia=beta_ia;
// nuisance.eta_ia=eta_ia;
// nuisance.eta_ia_highz=eta_ia_highz;
// nuisance.LF_alpha=LF_alpha;
// nuisance.LF_P=LF_P;
// nuisance.LF_Q=LF_Q;
// nuisance.LF_red_alpha=LF_red_alpha;
// nuisance.LF_red_P=LF_red_P;
// nuisance.LF_red_Q=LF_red_Q;
// if (nuisance.A_ia < 0.0 || nuisance.A_ia > 10.0) return 0;
// if (nuisance.beta_ia < -4.0 || nuisance.beta_ia > 6.0) return 0;
// if (nuisance.eta_ia < -10.0 || nuisance.eta_ia> 10.0) return 0;
// if (nuisance.eta_ia_highz < -1.0 || nuisance.eta_ia_highz> 1.0) return 0;
// // if(like.IA!=0){
// // if (check_LF()) return 0;
// // }
// return 1;
// }
int set_nuisance_cluster_Mobs(double cluster_Mobs_lgN0, double cluster_Mobs_alpha, double cluster_Mobs_beta, double cluster_Mobs_sigma0, double cluster_Mobs_sigma_qm, double cluster_Mobs_sigma_qz)
{
// nuisance.cluster_Mobs_lgM0 = mass_obs_norm; //fiducial : 1.72+log(1.e+14*0.7); could use e.g. sigma = 0.2 Gaussian prior
// nuisance.cluster_Mobs_alpha = mass_obs_slope; //fiducial: 1.08; e.g. sigma = 0.1 Gaussian prior
// nuisance.cluster_Mobs_beta = mass_z_slope; //fiducial: 0.0; e.g. sigma = 0.1 Gaussian prior
// nuisance.cluster_Mobs_sigma = mass_obs_scatter; //fiducial 0.25; e.g. sigma = 0.05 Gaussian prior
// fiducial values and priors from Murata et al. (2018) except for redshift-related parameters
nuisance.cluster_Mobs_lgN0 = cluster_Mobs_lgN0; //fiducial: 3.207, flat prior [0.5, 5.0]
nuisance.cluster_Mobs_alpha = cluster_Mobs_alpha; //fiducial: 0.993, flat prior [0.0, 2.0]
nuisance.cluster_Mobs_beta = cluster_Mobs_beta; //fiducial: 0.0, flat prior [-1.5, 1.5]
nuisance.cluster_Mobs_sigma0 = cluster_Mobs_sigma0; //fiducial: 0.456, flat prior [0.0, 1.5]
nuisance.cluster_Mobs_sigma_qm = cluster_Mobs_sigma_qm; //fiducial: -0.169, flat prior [-1.5, 1.5]
nuisance.cluster_Mobs_sigma_qz = cluster_Mobs_sigma_qz; //fiducial: 0.0, flat prior [-1.5, 1.5]
if (nuisance.cluster_Mobs_lgN0 < 0.5 || nuisance.cluster_Mobs_lgN0 > 5.0) return 0;
if (nuisance.cluster_Mobs_alpha < 0.0 || nuisance.cluster_Mobs_alpha > 2.0) return 0;
if (nuisance.cluster_Mobs_beta < -1.5 || nuisance.cluster_Mobs_beta > 1.5) return 0;
if (nuisance.cluster_Mobs_sigma0 < 0.0|| nuisance.cluster_Mobs_sigma0 > 1.5) return 0;
if (nuisance.cluster_Mobs_sigma_qm < -1.5 && nuisance.cluster_Mobs_sigma_qm > 1.5) return 0;
if (nuisance.cluster_Mobs_sigma_qz < -1.5 && nuisance.cluster_Mobs_sigma_qz > 1.5)return 0;
return 1;
}
int set_nuisance_gbias(double B1, double B2, double B3, double B4,double B5, double B6, double B7, double B8,double B9, double B10)
{
int i;
gbias.b[0] = B1;
gbias.b[1] = B2;
gbias.b[2] = B3;
gbias.b[3] = B4;
gbias.b[4] = B5;
gbias.b[5] = B6;
gbias.b[6] = B7;
gbias.b[7] = B8;
gbias.b[8] = B9;
gbias.b[9] = B10;
for (i = 0; i < tomo.clustering_Nbin; i++){
// printf("in set routine %d %le\n",i,gbias.b[i]);
if (gbias.b[i] < 0.4 || gbias.b[i] > 3.0) return 0;
}
return 1;
}
int set_nuisance_bmag(double B1, double B2, double B3, double B4,double B5, double B6, double B7, double B8,double B9, double B10)
{
int i;
gbias.b_mag[0] = B1;
gbias.b_mag[1] = B2;
gbias.b_mag[2] = B3;
gbias.b_mag[3] = B4;
gbias.b_mag[4] = B5;
gbias.b_mag[5] = B6;
gbias.b_mag[6] = B7;
gbias.b_mag[7] = B8;
gbias.b_mag[8] = B9;
gbias.b_mag[9] = B10;
for (i = 0; i < tomo.clustering_Nbin; i++){
// printf("in set routine %d %le\n",i,gbias.b[i]);
if (gbias.b_mag[i] < -5.0 || gbias.b_mag[i] > 5.0) return 0;
}
return 1;
}
double log_multi_like(double OMM, double S8, double NS, double W0,double WA, double OMB, double H0, double MGSigma, double MGmu, double B1, double B2, double B3, double B4,double B5, double B6, double B7, double B8, double B9, double B10, double BMAG1, double BMAG2, double BMAG3, double BMAG4,double BMAG5, double BMAG6, double BMAG7, double BMAG8, double BMAG9, double BMAG10, double SP1, double SP2, double SP3, double SP4, double SP5, double SP6, double SP7, double SP8, double SP9, double SP10, double CP1, double CP2, double CP3, double CP4, double CP5, double CP6, double CP7, double CP8, double CP9, double CP10, double M1, double M2, double M3, double M4, double M5, double M6, double M7, double M8, double M9, double M10, double A_ia, double eta_ia)
{
int i,j,k,m=0,l;
static double *pred;
static double *ell;
static double *ell_Cluster;
static double darg;
double chisqr,a,log_L_prior=0.0, log_L=0.0;;
if(ell==0){
pred= create_double_vector(0, like.Ndata-1);
ell= create_double_vector(0, like.Ncl-1);
darg=(log(like.lmax)-log(like.lmin))/like.Ncl;
for (l=0;l<like.Ncl;l++){
ell[l]=exp(log(like.lmin)+(l+0.5)*darg);
}
// ell_Cluster= create_double_vector(0, Cluster.lbin-1);
// darg=(log(Cluster.l_max)-log(Cluster.l_min))/Cluster.lbin;
// for (l=0;l<Cluster.lbin;l++){
// ell_Cluster[l]=exp(log(Cluster.l_min)+(l+0.5)*darg);
// }
}
if (set_cosmology_params(OMM,S8,NS,W0,WA,OMB,H0,MGSigma,MGmu)==0){
printf("Cosmology out of bounds\n");
return -1.0e15;
}
set_nuisance_shear_calib(M1,M2,M3,M4,M5,M6,M7,M8,M9,M10);
if (set_nuisance_shear_photoz(SP1,SP2,SP3,SP4,SP5,SP6,SP7,SP8,SP9,SP10)==0){
printf("Shear photo-z sigma too small\n");
return -1.0e15;
}
if (set_nuisance_clustering_photoz(CP1,CP2,CP3,CP4,CP5,CP6,CP7,CP8,CP9,CP10)==0){
printf("Clustering photo-z sigma too small\n");
return -1.0e15;
}
if (set_nuisance_ia(A_ia,eta_ia)==0){
printf("IA parameters out of bounds\n");
return -1.0e15;
}
if (set_nuisance_gbias(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10)==0){
printf("Bias out of bounds\n");
return -1.0e15;
}
if (set_nuisance_bmag(BMAG1,BMAG2,BMAG3,BMAG4,BMAG5,BMAG6,BMAG7,BMAG8,BMAG9,BMAG10)==0){
printf("Bmag out of bounds\n");
return -1.0e15;
}
// if (set_nuisance_cluster_Mobs(mass_obs_norm, mass_obs_slope, mass_z_slope, mass_obs_scatter_norm, mass_obs_scatter_mass_slope, mass_obs_scatter_z_slope)==0){
// printf("Mobs out of bounds\n");
// return -1.0e15;
// }
// for (i=0; i<10; i++){
// printf("nuisance %le %le %le\n",nuisance.shear_calibration_m[i],nuisance.bias_zphot_shear[i],nuisance.sigma_zphot_shear[i]);
// }
log_L_prior=0.0;
// if(like.Aubourg_Planck_BAO_SN==1) log_L_prior+=log_L_Planck_BAO_SN();
// if(like.SN==1) log_L_prior+=log_L_SN();
//if(like.BAO==1) log_L_prior+=log_L_BAO();
// if(like.Planck==1) log_L_prior+=log_L_Planck();
// if(like.Planck15_BAO_w0wa==1) log_L_prior+=log_L_Planck15_BAO_w0wa();//CH
//if(like.Planck15_BAO_H070p6_JLA_w0wa==1) log_L_prior+=log_L_Planck15_BAO_H070p6_JLA_w0wa();//CH
// if(like.IA!=0) log_L_prior+=log_L_ia();
// if(like.IA!=0) log_L_prior+=log_like_f_red();
if(like.wlphotoz!=0) log_L_prior+=log_L_wlphotoz();
if(like.clphotoz!=0) log_L_prior+=log_L_clphotoz();
if(like.shearcalib==1) log_L_prior+=log_L_shear_calib();
// if(like.IA!=0) {
// log_L = 0.0;
// log_L -= pow((nuisance.A_ia - prior.A_ia[0])/prior.A_ia[1],2.0);
// log_L -= pow((nuisance.beta_ia - prior.beta_ia[0])/prior.beta_ia[1],2.0);
// log_L -= pow((nuisance.eta_ia - prior.eta_ia[0])/prior.eta_ia[1],2.0);
// log_L -= pow((nuisance.eta_ia_highz - prior.eta_ia_highz[0])/prior.eta_ia_highz[1],2.0);
// log_L_prior+=0.5*log_L;
// }
// if(like.baryons==1){
// log_L = 0.0;
// log_L -= pow((Q1 - prior.bary_Q1[0])/prior.bary_Q1[1],2.0);
// log_L -= pow((Q2 - prior.bary_Q2[0])/prior.bary_Q2[1],2.0);
// log_L -= pow((Q3 - prior.bary_Q3[0])/prior.bary_Q3[1],2.0);
// log_L_prior+=0.5*log_L;
// }
// if(like.clusterMobs==1) log_L_prior+=log_L_clusterMobs();
// printf("%d %d %d %d\n",like.BAO,like.wlphotoz,like.clphotoz,like.shearcalib);
// printf("logl %le %le %le %le\n",log_L_shear_calib(),log_L_wlphotoz(),log_L_clphotoz(),log_L_clusterMobs());
int start=0;
if(like.shear_shear==1) {
set_data_shear(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.shear_Npowerspectra;
}
if(like.shear_pos==1){
set_data_ggl(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.ggl_Npowerspectra;
}
if(like.pos_pos==1){
set_data_clustering(like.Ncl,ell,pred, start);
start=start+like.Ncl*tomo.clustering_Npowerspectra;
}
if(like.gk==1) {
set_data_gk(ell, pred, start);
start += like.Ncl*tomo.clustering_Nbin;
}
if(like.ks==1) {
set_data_ks(ell, pred, start);
start += like.Ncl*tomo.shear_Nbin;
}
if(like.kk==1) {
set_data_kk(ell, pred, start);
start += like.Ncl;
}
chisqr=0.0;
for (i=0; i<like.Ndata; i++){
for (j=0; j<like.Ndata; j++){
// a=(pred[i]-data_read(1,i)+Q1*bary_read(1,0,i)+Q2*bary_read(1,1,i)+Q3*bary_read(1,2,i))*invcov_read(1,i,j)*(pred[j]-data_read(1,j)+Q1*bary_read(1,0,j)+Q2*bary_read(1,1,j)+Q3*bary_read(1,2,j));
a=(pred[i]-data_read(1,i))*invcov_mask(1,i,j)*(pred[j]-data_read(1,j));
// if(a>10){printf("a,i,j: %le, %d, %d, %le, %le, %le\n",a,i,j,pred[i]-data_read(1,i),pred[j]-data_read(1,j), invcov_mask(1,i,j));}
chisqr=chisqr+a;
}
// if (fabs(data_read(1,i)) < 1.e-25){
// printf("%d %le %le %le\n",i,data_read(1,i),pred[i],invcov_read(1,i,i));
// }
}
if (chisqr<0.0){
printf("error: chisqr = %le\n",chisqr);
//exit(EXIT_FAILURE);
}
printf("%le\n",chisqr);
return -0.5*chisqr+log_L_prior;
}
void compute_data_vector(char *details, double OMM, double S8, double NS, double W0,double WA, double OMB, double H0, double MGSigma, double MGmu, double B1, double B2, double B3, double B4,double B5, double B6, double B7, double B8, double B9, double B10, double BMAG1, double BMAG2, double BMAG3, double BMAG4,double BMAG5, double BMAG6, double BMAG7, double BMAG8, double BMAG9, double BMAG10, double SP1, double SP2, double SP3, double SP4, double SP5,double SP6, double SP7, double SP8, double SP9, double SP10, double CP1, double CP2, double CP3, double CP4, double CP5, double CP6, double CP7, double CP8, double CP9, double CP10, double M1, double M2, double M3, double M4, double M5, double M6, double M7, double M8, double M9, double M10, double A_ia, double eta_ia)
{
int i,j,k,m=0,l;
static double *pred;
static double *ell;
static double *ell_Cluster;
static double darg;
double chisqr,a,log_L_prior=0.0;
if(ell==0){
pred= create_double_vector(0, like.Ndata-1);
ell= create_double_vector(0, like.Ncl-1);
darg=(log(like.lmax)-log(like.lmin))/like.Ncl;
for (l=0;l<like.Ncl;l++){
ell[l]=exp(log(like.lmin)+(l+0.5)*darg);
}
// ell_Cluster= create_double_vector(0, Cluster.lbin-1);
// darg=(log(Cluster.l_max)-log(Cluster.l_min))/Cluster.lbin;
// for (l=0;l<Cluster.lbin;l++){
// ell_Cluster[l]=exp(log(Cluster.l_min)+(l+0.5)*darg);
// }
}
// for (l=0;l<like.Ncl;l++){
// printf("%d %le\n",i,ell[l]);
// }
set_cosmology_params(OMM,S8,NS,W0,WA,OMB,H0,MGSigma,MGmu);
set_nuisance_shear_calib(M1,M2,M3,M4,M5,M6,M7,M8,M9,M10);
set_nuisance_shear_photoz(SP1,SP2,SP3,SP4,SP5,SP6,SP7,SP8,SP9,SP10);
set_nuisance_clustering_photoz(CP1,CP2,CP3,CP4,CP5,CP6,CP7,CP8,CP9,CP10);
set_nuisance_ia(A_ia,eta_ia);
set_nuisance_gbias(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10);
set_nuisance_bmag(BMAG1,BMAG2,BMAG3,BMAG4,BMAG5,BMAG6,BMAG7,BMAG8,BMAG9,BMAG10);
// set_nuisance_cluster_Mobs(mass_obs_norm,mass_obs_slope,mass_z_slope,mass_obs_scatter_norm,mass_obs_scatter_mass_slope,mass_obs_scatter_z_slope);
int start=0;
if(like.shear_shear==1) {
set_data_shear(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.shear_Npowerspectra;
}
if(like.shear_pos==1){
//printf("ggl\n");
set_data_ggl(like.Ncl, ell, pred, start);
start=start+like.Ncl*tomo.ggl_Npowerspectra;
}
if(like.pos_pos==1){
//printf("clustering\n");
set_data_clustering(like.Ncl,ell,pred, start);
start=start+like.Ncl*tomo.clustering_Npowerspectra;
}
if(like.gk==1) {
printf("Computing data vector: gk\n");
set_data_gk(ell, pred, start);
start += like.Ncl * tomo.clustering_Nbin;
}
if(like.ks==1) {
printf("Computing data vector: ks\n");
set_data_ks(ell, pred, start);
start += like.Ncl * tomo.shear_Nbin;
}
if (like.kk) {
printf("Computing data vector: kk\n");
set_data_kk(ell, pred, start);
start += like.Ncl;
}
FILE *F;
char filename[300];
if (strstr(details,"FM") != NULL){
sprintf(filename,"%s",details);
}
else {sprintf(filename,"datav/%s_%s",like.probes,details);}
F=fopen(filename,"w");
for (i=0;i<like.Ndata; i++){
fprintf(F,"%d %le\n",i,pred[i]);
//printf("%d %le\n",i,pred[i]);
}
fclose(F);
// printf("&gbias.b1_function %p\n",&gbias.b1_function);
// printf("gbias.b1_function %p\n",gbias.b1_function);
// printf("bgal_z %p\n",bgal_z);
// printf("&bgal_z %p\n",&bgal_z);
// printf("b1_per_bin %p\n",b1_per_bin);
// printf("&b1_per_bin %p\n",&b1_per_bin);
}
void write_datavector_wrapper(char *details, input_cosmo_params_des ic, input_nuisance_params_des in)
{
compute_data_vector(details, ic.omega_m, ic.sigma_8, ic.n_s, ic.w0, ic.wa, ic.omega_b, ic.h0, ic.MGSigma, ic.MGmu,
in.bias[0], in.bias[1], in.bias[2], in.bias[3],in.bias[4], in.bias[5], in.bias[6], in.bias[7],in.bias[8], in.bias[9],
in.b_mag[0], in.b_mag[1], in.b_mag[2], in.b_mag[3],in.b_mag[4], in.b_mag[5], in.b_mag[6], in.b_mag[7],in.b_mag[8], in.b_mag[9],
in.source_z_bias[0], in.source_z_bias[1], in.source_z_bias[2], in.source_z_bias[3], in.source_z_bias[4],
in.source_z_bias[5], in.source_z_bias[6], in.source_z_bias[7], in.source_z_bias[8], in.source_z_bias[9],
in.lens_z_bias[0], in.lens_z_bias[1], in.lens_z_bias[2], in.lens_z_bias[3], in.lens_z_bias[4],
in.lens_z_bias[5], in.lens_z_bias[6], in.lens_z_bias[7], in.lens_z_bias[8], in.lens_z_bias[9],
in.shear_m[0], in.shear_m[1], in.shear_m[2], in.shear_m[3], in.shear_m[4],
in.shear_m[5], in.shear_m[6], in.shear_m[7], in.shear_m[8], in.shear_m[9],
in.A_ia, in.eta_ia);
}
double log_like_wrapper(input_cosmo_params_des ic, input_nuisance_params_des in)
{
double like = log_multi_like(ic.omega_m, ic.sigma_8, ic.n_s, ic.w0, ic.wa, ic.omega_b, ic.h0, ic.MGSigma, ic.MGmu,
in.bias[0], in.bias[1], in.bias[2], in.bias[3],in.bias[4], in.bias[5], in.bias[6], in.bias[7],in.bias[8], in.bias[9],
in.b_mag[0], in.b_mag[1], in.b_mag[2], in.b_mag[3],in.b_mag[4], in.b_mag[5], in.b_mag[6], in.b_mag[7],in.b_mag[8], in.b_mag[9],
in.source_z_bias[0], in.source_z_bias[1], in.source_z_bias[2], in.source_z_bias[3], in.source_z_bias[4],
in.source_z_bias[5], in.source_z_bias[6], in.source_z_bias[7], in.source_z_bias[8], in.source_z_bias[9],
in.lens_z_bias[0], in.lens_z_bias[1], in.lens_z_bias[2], in.lens_z_bias[3], in.lens_z_bias[4],
in.lens_z_bias[5], in.lens_z_bias[6], in.lens_z_bias[7], in.lens_z_bias[8], in.lens_z_bias[9],
in.shear_m[0], in.shear_m[1], in.shear_m[2], in.shear_m[3], in.shear_m[4],
in.shear_m[5], in.shear_m[6], in.shear_m[7], in.shear_m[8], in.shear_m[9],
in.A_ia, in.eta_ia);
return like;
}
void save_zdistr_sources(int zs){
double z,dz =(redshift.shear_zdistrpar_zmax-redshift.shear_zdistrpar_zmin)/300.0;
printf("Printing redshift distribution n(z) for source redshift bin %d\n",zs);
FILE *F1;
char filename[300];
sprintf(filename,"zdistris/zdist_sources_bin%d.txt",zs);
F1 = fopen(filename,"w");
for (z =redshift.shear_zdistrpar_zmin; z< redshift.shear_zdistrpar_zmax; z+= dz){
fprintf(F1,"%e %e\n", z, zdistr_photoz(z,zs));
}
}
void save_zdistr_lenses(int zl){
double z,dz =(redshift.clustering_zdistrpar_zmax-redshift.clustering_zdistrpar_zmin)/300.0;
printf("Printing redshift distribution n(z) and bias b(z) for lens redshift bin %d\n",zl);
FILE *F1;
char filename[300];
sprintf(filename,"zdistris/zdist_lenses_bin%d.txt", zl);
F1 = fopen(filename,"w");
for (z =redshift.clustering_zdistrpar_zmin; z< redshift.clustering_zdistrpar_zmax; z+= dz){
fprintf(F1,"%e %e\n", z, pf_photoz(z,zl));
}
}
int main(int argc, char** argv)
{
int i;
// char arg1[400],arg2[400],arg3[400];
/* here, do your time-consuming job */
// int sce=atoi(argv[1]);
// int N_scenarios=2;
// double sigma_zphot_shear[3]={0.05,0.05};
// double sigma_zphot_clustering[3]={0.03,0.03};
// double area_table[2]={12300.0,16500.0}; // Y1 corresponds to DESC SRD Y1, Y6 corresponds to assuming that we cover the full SO area=0.4*fsky and at a depth of 26.1 which is in a range of reasonable scenarios (see https://github.com/LSSTDESC/ObsStrat/tree/static/static )
// double nsource_table[2]={11.0,23.0};
// double nlens_table[2]={18.0,41.0};
// char survey_designation[2][200]={"LSSTxSO_Y1","LSSTxSO_Y6"};
// char tomo_binning_source[2][200]={"source_std","source_std"};
// char tomo_binning_lens[2][200]={"LSST_gold","LSST_gold"};
// char source_zfile[2][400]={"src_LSSTY1","src_LSSTY6"};
// char lens_zfile[2][400]={"lens_LSSTY1", "lens_LSSTY6"};
init_cosmo_runmode("halofit");
// init_bary(argv[2]);
init_binning_fourier(20,30.0,3000.0,3000.0,20.0);
// init_priors(0.002,sigma_zphot_shear[sce],0.001,0.001,sigma_zphot_clustering[sce],0.001,0.001,3.0,1.2,3.8,2.0,16.0,5.0,0.8);
// init_survey(survey_designation[sce],nsource_table[sce],nlens_table[sce],area_table[sce]);
// sprintf(arg1,"zdistris/%s",source_zfile[sce]);
// sprintf(arg2,"zdistris/%s",lens_zfile[sce]);
// init_galaxies(arg1,arg2,"gaussian","gaussian",tomo_binning_source[sce],tomo_binning_lens[sce]);
double b1[10]={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}, b2[10] ={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.},b_mag[10] ={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
b1[0] = 1.7;
b1[1] = 1.7;
b1[2] = 1.7;
b1[3] = 2.0;
b1[4] = 2.0;
b_mag[0] = -0.19375;
b_mag[1] = -0.6285407;
b_mag[2] = -0.69319886;
b_mag[3] = 1.17735723;
b_mag[4] = 1.87509758;
// init_source_sample_mpp("./zdistris/mcal_1101_source.nz",4);
init_source_sample_mpp("./zdistris/source_DESY6_3bins.nz",3);
init_lens_sample_mpp("./zdistris/mcal_1101_lens.nz",5);
init_IA_mpp(4);
init_probes("6x2pt");
init_cmb("planck");
compute_data_vector("desy6xplanck_6x2pt_3bins_2.txt",0.25,0.75,0.97,-1.,0.,0.048,0.69,0.,0.,\
b1[0],b1[1],b1[2],b1[3],b1[4],\
b1[5],b1[6],b1[7],b1[8],b1[9],\
b_mag[0],b_mag[1],b_mag[2],b_mag[3],b_mag[4],\
b_mag[5],b_mag[6],b_mag[7],b_mag[8],b_mag[9],\
0.0,0.0,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,\
0.5,0.0);
// init_data_cov_mask("cov/cov_desy3xplanck","datav/6x2pt_desy3xplanck_6x2pt.txt", "datav/xi_Y3_6x2pt.mask");
// // init_data_cov_mask("cov/cov_desy6xplanck_3src","datav/6x2pt_desy6xplanck_6x2pt_3bins.txt", "datav/xi_Y6_6x2pt_3src.mask");
// for(double omm=0.2;omm<0.5; omm+=0.01){
// printf("%le, %le\n", omm, log_multi_like(omm,0.82355,0.97,-1.,0.,0.048,0.69,0.,0.,\
// b1[0],b1[1],b1[2],b1[3],b1[4],\
// b1[5],b1[6],b1[7],b1[8],b1[9],\
// b_mag[0],b_mag[1],b_mag[2],b_mag[3],b_mag[4],\
// b_mag[5],b_mag[6],b_mag[7],b_mag[8],b_mag[9],\
// 0.0,0.0,0.0,0.0,0.0,\
// 0.0,0.0,0.0,0.0,0.0,\
// 0.0,0.0,0.0,0.0,0.0,\
// 0.0,0.0,0.0,0.0,0.0,\
// 0.0,0.0,0.0,0.0,0.0,\
// 0.0,0.0,0.0,0.0,0.0,\
// 0.5,0.0));
// exit(0);
// }
return 0;
}