-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
229 lines (175 loc) · 8.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"""
Link Prediction using Mixer
"""
import torch
import numpy as np
import argparse
import os
from utils import set_seed, load_feat, load_graph
from link_pred_train_utils import link_pred_train
from link_pred_eval_utils import link_pred_eval
from data_process_utils import check_data_leakage
####################################################################
####################################################################
####################################################################
# define file name
def name_fn(args, mixer_configs):
fn = 'results/%s_neighbors%d_edges%d_layers%d_%dhop'%(args.data, args.num_neighbors, args.max_edges, args.num_layers, args.sampled_num_hops)
if args.ignore_node_feats:
fn += '_no_node_feat'
if args.ignore_edge_feats:
fn += '_no_edge_feat'
if 'module_spec' in mixer_configs:
for spec in mixer_configs['module_spec']:
fn += '_'
if 'token' in spec.split('+'):
fn += 't'
if 'channel' in spec.split('+'):
fn += 'c'
if 'use_single_layer' in mixer_configs and mixer_configs['use_single_layer']:
fn += '_perceptron'
return fn
def print_model_info(model):
print(model)
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
print('Trainable Parameters: %.3f million' % parameters)
def get_args():
parser=argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='REDDIT')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=600)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--max_edges', type=int, default=50)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=1e-6)
parser.add_argument('--model', type=str, default='mlp_mixer')
parser.add_argument('--neg_samples', type=int, default=1)
parser.add_argument('--extra_neg_samples', type=int, default=5)
parser.add_argument('--num_neighbors', type=int, default=10) # hyper-parameters K
parser.add_argument('--sampled_num_hops', type=int, default=1)
parser.add_argument('--hidden_dims', type=int, default=100)
parser.add_argument('--num_layers', type=int, default=1)
parser.add_argument('--regen_models', action='store_true')
parser.add_argument('--check_data_leakage', action='store_true')
parser.add_argument('--ignore_node_feats', action='store_true')
parser.add_argument('--node_feats_as_edge_feats', action='store_true')
parser.add_argument('--ignore_edge_feats', action='store_true')
parser.add_argument('--use_onehot_node_feats', action='store_true')
parser.add_argument('--use_graph_structure', action='store_true')
parser.add_argument('--structure_time_gap', type=int, default=2000) # hyper-parameters T
parser.add_argument('--structure_hops', type=int, default=1)
parser.add_argument('--use_node_cls', action='store_true')
parser.add_argument('--use_cached_subgraph', action='store_true')
return parser.parse_args()
def load_all_data(args):
# load graph
g, df = load_graph(args.data)
args.train_edge_end = df[df['ext_roll'].gt(0)].index[0]
args.val_edge_end = df[df['ext_roll'].gt(1)].index[0]
args.num_nodes = max(int(df['src'].max()), int(df['dst'].max())) + 1
args.num_edges = len(df)
print('Train %d, Valid %d, Test %d'%(args.train_edge_end,
args.val_edge_end-args.train_edge_end,
len(df)-args.val_edge_end))
print('Num nodes %d, num edges %d'%(args.num_nodes, args.num_edges))
# load feats
node_feats, edge_feats = load_feat(args.data)
node_feat_dims = 0 if node_feats is None else node_feats.shape[1]
edge_feat_dims = 0 if edge_feats is None else edge_feats.shape[1]
# feature pre-processing
if args.use_onehot_node_feats:
print('>>> Use one-hot node features')
node_feats = torch.eye(args.num_nodes)
node_feat_dims = node_feats.size(1)
if args.ignore_node_feats:
print('>>> Ignore node features')
node_feats = None
node_feat_dims = 0
if edge_feats is None or args.ignore_edge_feats: # By default edge feature exists
print('>>> Ignore edge features')
edge_feats = torch.zeros((args.num_edges, 1)) # all edge has same features
edge_feat_dims = 1
if node_feats != None and args.node_feats_as_edge_feats:
print('>>> Use node features as part of edge features')
edge_feats = torch.cat([node_feats[df.src.values] + node_feats[df.dst.values], edge_feats], dim=1)
edge_feat_dims = edge_feats.size(1)
print('Node feature dim %d, edge feature dim %d'%(node_feat_dims, edge_feat_dims))
# double check (if data leakage then cannot continue the code)
if args.check_data_leakage:
check_data_leakage(args, g, df)
args.node_feat_dims = node_feat_dims
args.edge_feat_dims = edge_feat_dims
node_feats = node_feats.to(args.device) # here we only move node feats to cuda, not edges because too many edges
return node_feats, edge_feats, g, df, args
def load_model(args):
# get model
edge_predictor_configs = {
'dim_in_time': 100,
'dim_in_node': args.node_feat_dims,
}
if args.model == 'mlp_mixer':
from model import Mixer_per_node
mixer_configs = {
'per_graph_size' : args.max_edges,
'time_channels' : 100,
'input_channels' : args.edge_feat_dims,
'hidden_channels' : args.hidden_dims,
'out_channels' : 100,
'num_layers' : args.num_layers,
'use_single_layer' : False
}
elif args.model == 'gat_mixer':
from model_self_attention import Mixer_per_node
mixer_configs = {
'per_graph_size' : args.max_edges,
'time_channels' : 100,
'input_channels' : args.edge_feat_dims,
'hidden_channels' : args.hidden_dims,
'out_channels' : 100,
'num_layers' : args.num_layers,
'heads' : 2
}
else:
NotImplementedError()
model = Mixer_per_node(mixer_configs, edge_predictor_configs)
for k, v in model.named_parameters():
print(k, v.requires_grad)
print_model_info(model)
fn = name_fn(args, mixer_configs)
args.model_fn = fn+'.pt'
args.link_pred_result_fn = fn+'.json'
print(fn)
return model, args
####################################################################
####################################################################
####################################################################
if __name__ == "__main__":
args = get_args()
args.regen_models = True
args.use_graph_structure = True
print(args)
args.device = f"cuda:{args.device}" if torch.cuda.is_available() else "cpu"
args.device = torch.device(args.device)
# args.device = torch.device('cpu')
set_seed(0)
###################################################
# load feats + graph
node_feats, edge_feats, g, df, args = load_all_data(args)
###################################################
# get model
model, args = load_model(args)
###################################################
# Link prediction
if os.path.exists(args.model_fn) == False or args.regen_models:
print('Train link prediction task from scratch ...')
model = link_pred_train(model.to(args.device), args, g, df, node_feats, edge_feats)
torch.save(model.state_dict(), args.model_fn)
print('Save model to ', args.model_fn)
else:
print('Load model from ', args.model_fn)
model.load_state_dict(torch.load(args.model_fn))
model = model.to(args.device)
###################################################
# Recall@K + MRR
link_pred_eval(model.to(args.device), args, g, df, node_feats, edge_feats)