forked from UoB-HPC/BabelStream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RAJAStream.cpp
156 lines (132 loc) · 3.25 KB
/
RAJAStream.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "RAJAStream.hpp"
using RAJA::forall;
using RAJA::RangeSegment;
#ifndef ALIGNMENT
#define ALIGNMENT (2*1024*1024) // 2MB
#endif
template <class T>
RAJAStream<T>::RAJAStream(const unsigned int ARRAY_SIZE, const int device_index)
: array_size(ARRAY_SIZE)
{
RangeSegment seg(0, ARRAY_SIZE);
index_set.push_back(seg);
#ifdef RAJA_TARGET_CPU
d_a = (T*)aligned_alloc(ALIGNMENT, sizeof(T)*array_size);
d_b = (T*)aligned_alloc(ALIGNMENT, sizeof(T)*array_size);
d_c = (T*)aligned_alloc(ALIGNMENT, sizeof(T)*array_size);
#else
cudaMallocManaged((void**)&d_a, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
cudaMallocManaged((void**)&d_b, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
cudaMallocManaged((void**)&d_c, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
cudaDeviceSynchronize();
#endif
}
template <class T>
RAJAStream<T>::~RAJAStream()
{
#ifdef RAJA_TARGET_CPU
free(d_a);
free(d_b);
free(d_c);
#else
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
#endif
}
template <class T>
void RAJAStream<T>::init_arrays(T initA, T initB, T initC)
{
T* RAJA_RESTRICT a = d_a;
T* RAJA_RESTRICT b = d_b;
T* RAJA_RESTRICT c = d_c;
forall<policy>(index_set, [=] RAJA_DEVICE (RAJA::Index_type index)
{
a[index] = initA;
b[index] = initB;
c[index] = initC;
});
}
template <class T>
void RAJAStream<T>::read_arrays(
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
std::copy(d_a, d_a + array_size, a.data());
std::copy(d_b, d_b + array_size, b.data());
std::copy(d_c, d_c + array_size, c.data());
}
template <class T>
void RAJAStream<T>::copy()
{
T* RAJA_RESTRICT a = d_a;
T* RAJA_RESTRICT c = d_c;
forall<policy>(index_set, [=] RAJA_DEVICE (RAJA::Index_type index)
{
c[index] = a[index];
});
}
template <class T>
void RAJAStream<T>::mul()
{
T* RAJA_RESTRICT b = d_b;
T* RAJA_RESTRICT c = d_c;
const T scalar = startScalar;
forall<policy>(index_set, [=] RAJA_DEVICE (RAJA::Index_type index)
{
b[index] = scalar*c[index];
});
}
template <class T>
void RAJAStream<T>::add()
{
T* RAJA_RESTRICT a = d_a;
T* RAJA_RESTRICT b = d_b;
T* RAJA_RESTRICT c = d_c;
forall<policy>(index_set, [=] RAJA_DEVICE (RAJA::Index_type index)
{
c[index] = a[index] + b[index];
});
}
template <class T>
void RAJAStream<T>::triad()
{
T* RAJA_RESTRICT a = d_a;
T* RAJA_RESTRICT b = d_b;
T* RAJA_RESTRICT c = d_c;
const T scalar = startScalar;
forall<policy>(index_set, [=] RAJA_DEVICE (RAJA::Index_type index)
{
a[index] = b[index] + scalar*c[index];
});
}
template <class T>
T RAJAStream<T>::dot()
{
T* RAJA_RESTRICT a = d_a;
T* RAJA_RESTRICT b = d_b;
RAJA::ReduceSum<reduce_policy, T> sum(0.0);
forall<policy>(index_set, [=] RAJA_DEVICE (RAJA::Index_type index)
{
sum += a[index] * b[index];
});
return T(sum);
}
void listDevices(void)
{
std::cout << "This is not the device you are looking for.";
}
std::string getDeviceName(const int device)
{
return "RAJA";
}
std::string getDeviceDriver(const int device)
{
return "RAJA";
}
template class RAJAStream<float>;
template class RAJAStream<double>;