-
Notifications
You must be signed in to change notification settings - Fork 196
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dc78eab
commit 30f5028
Showing
1 changed file
with
202 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
using Pkg | ||
# cd("D:\\Home\\Git\\Oceananigans.jl") | ||
cd("C:\\Users\\Ali\\Documents\\Git\\Oceananigans.jl\\") | ||
Pkg.activate(".") | ||
|
||
using Statistics, Printf | ||
using Oceananigans, Oceananigans.Operators | ||
|
||
import PyPlot | ||
using Interact, Plots | ||
Plots.gr() | ||
|
||
include("../src/operators/operators_old.jl") | ||
include("../src/equation_of_state_old.jl") | ||
|
||
const NumType = Float64 # Number data type. | ||
const g = 9.80665 # Standard acceleration due to gravity [m/s²]. | ||
const f = 1e-4 # Nominal value for the Coriolis frequency [rad/s]. | ||
const χ = 0.1 # Adams-Bashforth (AB2) parameter. | ||
|
||
Nˣ, Nʸ, Nᶻ = 100, 1, 50 | ||
Lˣ, Lʸ, Lᶻ = 2000, 2000, 1000 # Domain size [m]. | ||
|
||
Nᵗ = 120 | ||
Δt = 10 # Time step [s]. | ||
|
||
Δx, Δy, Δz = Lˣ/Nˣ, Lʸ/Nʸ, Lᶻ/Nᶻ # Grid spacing [m]. | ||
Aˣ, Aʸ, Aᶻ = Δy*Δz, Δx*Δz, Δx*Δy # Cell face areas [m²]. | ||
V = Δx*Δy*Δz # Volume of a cell [m³]. | ||
M = ρ₀*V # Mass of water in a cell [kg]. | ||
|
||
xC = Δx/2:Δx:Lˣ | ||
yC = Δy/2:Δy:Lʸ | ||
zC = -Δz/2:-Δz:-Lᶻ | ||
|
||
uⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Velocity in x-direction [m/s]. | ||
vⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Velocity in y-direction [m/s]. | ||
wⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Velocity in z-direction [m/s]. | ||
Tⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Potential temperature [K]. | ||
Sⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Salinity [g/kg]. | ||
pʰʸ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Hydrostatic pressure [Pa]. | ||
pⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Pressure [Pa]. | ||
ρⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) # Density [kg/m³]. | ||
|
||
Gᵘⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gᵛⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gʷⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gᵀⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gˢⁿ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
|
||
Gᵘⁿ⁻¹ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gᵛⁿ⁻¹ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gʷⁿ⁻¹ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gᵀⁿ⁻¹ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gˢⁿ⁻¹ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
|
||
Gᵘⁿ⁺ʰ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gᵛⁿ⁺ʰ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gʷⁿ⁺ʰ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gᵀⁿ⁺ʰ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
Gˢⁿ⁺ʰ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
|
||
pʰʸ′ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
pⁿʰ⁺ˢ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
g′ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
δρ = Array{NumType, 3}(undef, Nˣ, Nʸ, Nᶻ) | ||
|
||
uⁿ .= 0; vⁿ .= 0; wⁿ .= 0; Sⁿ .= 35; | ||
|
||
# Tⁿ = repeat(reshape(T_ref, 1, 1, 50), Nˣ, Nʸ, 1) | ||
Tⁿ .= 283 | ||
|
||
pHY_profile = [-ρ₀*g*h for h in zC] | ||
pʰʸ = repeat(reshape(pHY_profile, 1, 1, Nᶻ), Nˣ, Nʸ, 1) | ||
pⁿ = copy(pʰʸ) # Initial pressure is just the hydrostatic pressure. | ||
|
||
ρⁿ .= ρ.(Tⁿ, Sⁿ, pⁿ); | ||
|
||
# Tⁿ[Int(Nˣ/2)-5:Int(Nˣ/2)+5, 1, 10-2:10+5] .= 283.01 | ||
|
||
# hot_buble_perturbation = reshape(0.01 * exp.(-100 * ((xC .- Lˣ/2).^2 .+ (zC .+ Lᶻ/2)'.^2) / (Lˣ^2 + Lᶻ^2)), (Nˣ, Nʸ, Nᶻ)) | ||
# @. Tⁿ = 282.99 + 2*hot_buble_perturbation | ||
|
||
Fᵀ = zeros(Nˣ, Nʸ, Nᶻ) | ||
@. Fᵀ[Int(Nˣ/10):Int(9Nˣ/10), 1, 1] = -0.5e-5 + 1e-6*rand() | ||
|
||
ΔR = 10 | ||
Ru = Array{NumType, 4}(undef, Int(Nᵗ/ΔR), Nˣ, Nʸ, Nᶻ) | ||
# Rv = Array{NumType, 4}(undef, Nᵗ, Nˣ, Nʸ, Nᶻ) | ||
Rw = Array{NumType, 4}(undef, Int(Nᵗ/ΔR), Nˣ, Nʸ, Nᶻ) | ||
RT = Array{NumType, 4}(undef, Int(Nᵗ/ΔR), Nˣ, Nʸ, Nᶻ) | ||
# RS = Array{NumType, 4}(undef, Nᵗ, Nˣ, Nʸ, Nᶻ) | ||
Rρ = Array{NumType, 4}(undef, Int(Nᵗ/ΔR), Nˣ, Nʸ, Nᶻ) | ||
# RpHY′ = Array{NumType, 4}(undef, Nᵗ, Nˣ, Nʸ, Nᶻ) | ||
RpNHS = Array{NumType, 4}(undef, Int(Nᵗ/ΔR), Nˣ, Nʸ, Nᶻ) | ||
|
||
κʰ = 4e-2 # Horizontal Laplacian heat diffusion [m²/s]. diffKhT in MITgcm. | ||
κᵛ = 4e-2 # Vertical Laplacian heat diffusion [m²/s]. diffKzT in MITgcm. | ||
|
||
𝜈ʰ = 4e-2 # Horizontal eddy viscosity [Pa·s]. viscAh in MITgcm. | ||
𝜈ᵛ = 4e-2 # Vertical eddy viscosity [Pa·s]. viscAz in MITgcm. | ||
|
||
function time_stepping(uⁿ, vⁿ, wⁿ, Tⁿ, Sⁿ, pⁿ, pʰʸ, pʰʸ′, pⁿʰ⁺ˢ, g′, ρⁿ, δρ, Gᵘⁿ, Gᵛⁿ, Gʷⁿ, Gᵀⁿ, Gˢⁿ, Gᵘⁿ⁻¹, Gᵛⁿ⁻¹, Gʷⁿ⁻¹, Gᵀⁿ⁻¹, Gˢⁿ⁻¹, Gᵘⁿ⁺ʰ, Gᵛⁿ⁺ʰ, Gʷⁿ⁺ʰ, Gᵀⁿ⁺ʰ, Gˢⁿ⁺ʰ) | ||
for n in 1:Nᵗ | ||
# Calculate new density and density deviation. | ||
@. δρ = ρ(Tⁿ, Sⁿ, pⁿ) - ρ₀ | ||
@. ρⁿ = ρ₀ + δρ | ||
|
||
δρ̅ᶻ = avgᶻc2f(δρ) | ||
for j in 1:Nʸ, i in 1:Nˣ | ||
pʰʸ′[i, j, 1] = δρ[i, j, 1] * g * Δz / 2 | ||
end | ||
for k in 2:Nᶻ, j in 1:Nʸ, i in 1:Nˣ | ||
pʰʸ′[i, j, k] = pʰʸ′[i, j, k-1] + (δρ̅ᶻ[i, j, k] * g * Δz) | ||
end | ||
|
||
Gᵘⁿ⁻¹ = Gᵘⁿ; Gᵛⁿ⁻¹ = Gᵛⁿ; Gʷⁿ⁻¹ = Gʷⁿ; Gᵀⁿ⁻¹ = Gᵀⁿ; Gˢⁿ⁻¹ = Gˢⁿ; | ||
|
||
# Gᵘⁿ .= -(1/Δx) .* δˣc2f(pʰʸ′ ./ ρ₀) .+ 𝜈ʰ∇²u(uⁿ) | ||
# Gᵛⁿ .= -(1/Δy) .* δʸc2f(pʰʸ′ ./ ρ₀) .+ 𝜈ʰ∇²v(vⁿ) | ||
# Gʷⁿ .= 𝜈ᵛ∇²w(wⁿ) | ||
Gᵘⁿ .= .- ũ∇u(uⁿ, vⁿ, wⁿ) .+ f .* avgʸc2f(avgˣf2c(vⁿ)) .- (1/Δx) .* δˣc2f(pʰʸ′ ./ ρ₀) .+ 𝜈ʰ∇²u(uⁿ) | ||
Gᵛⁿ .= .- ũ∇v(uⁿ, vⁿ, wⁿ) .- f .* avgˣc2f(avgʸf2c(uⁿ)) .- (1/Δy) .* δʸc2f(pʰʸ′ ./ ρ₀) .+ 𝜈ʰ∇²v(vⁿ) | ||
Gʷⁿ .= -ũ∇w(uⁿ, vⁿ, wⁿ) .+ 𝜈ᵛ∇²w(wⁿ) | ||
Gᵀⁿ .= -div_flux_f2c(uⁿ, vⁿ, wⁿ, Tⁿ) .+ κ∇²(Tⁿ) + Fᵀ | ||
Gˢⁿ .= -div_flux_f2c(uⁿ, vⁿ, wⁿ, Sⁿ) .+ κ∇²(Sⁿ) | ||
|
||
@. begin | ||
Gᵘⁿ⁺ʰ = (3/2 + χ)*Gᵘⁿ - (1/2 + χ)*Gᵘⁿ⁻¹ | ||
Gᵛⁿ⁺ʰ = (3/2 + χ)*Gᵛⁿ - (1/2 + χ)*Gᵛⁿ⁻¹ | ||
Gʷⁿ⁺ʰ = (3/2 + χ)*Gʷⁿ - (1/2 + χ)*Gʷⁿ⁻¹ | ||
Gᵀⁿ⁺ʰ = (3/2 + χ)*Gᵀⁿ - (1/2 + χ)*Gᵀⁿ⁻¹ | ||
Gˢⁿ⁺ʰ = (3/2 + χ)*Gˢⁿ - (1/2 + χ)*Gˢⁿ⁻¹ | ||
end | ||
|
||
RHS = div_f2c(Gᵘⁿ⁺ʰ, Gᵛⁿ⁺ʰ, Gʷⁿ⁺ʰ) # Right hand side or source term. | ||
pⁿʰ⁺ˢ = solve_poisson_3d_ppn(RHS, Nˣ, Nʸ, Nᶻ, Δx, Δy, Δz) | ||
|
||
# RHS_rec = laplacian3d_ppn(pⁿʰ⁺ˢ) ./ (Δx)^2 # TODO: This assumes Δx == Δy == Δz. | ||
# error = RHS_rec .- RHS | ||
# @info begin | ||
# string("Fourier-spectral solver diagnostics:\n", | ||
# @sprintf("RHS: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(RHS), maximum(RHS), mean(RHS), mean(abs.(RHS)), std(RHS)), | ||
# @sprintf("RHS_rec: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(RHS_rec), maximum(RHS_rec), mean(RHS_rec), mean(abs.(RHS_rec)), std(RHS_rec)), | ||
# @sprintf("error: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(error), maximum(error), mean(error), mean(abs.(error)), std(error)) | ||
# ) | ||
# end | ||
|
||
@. pⁿ = pʰʸ′ + pⁿʰ⁺ˢ | ||
|
||
uⁿ .= uⁿ .+ ( Gᵘⁿ⁺ʰ .- (1/Δx) .* δˣc2f(pⁿʰ⁺ˢ) ) .* Δt | ||
vⁿ .= vⁿ .+ ( Gᵛⁿ⁺ʰ .- (1/Δy) .* δʸc2f(pⁿʰ⁺ˢ) ) .* Δt | ||
wⁿ .= wⁿ .+ ( Gʷⁿ⁺ʰ .- (1/Δz) .* δᶻc2f(pⁿʰ⁺ˢ) ) .* Δt | ||
|
||
@. Sⁿ = Sⁿ + (Gˢⁿ⁺ʰ * Δt) | ||
@. Tⁿ = Tⁿ + (Gᵀⁿ⁺ʰ * Δt) | ||
|
||
div_u1 = div_f2c(uⁿ, vⁿ, wⁿ) | ||
|
||
if n % ΔR == 0 | ||
print("\rt=$(n*Δt)/$(Nᵗ*Δt)") | ||
# @info begin | ||
# string("Time: $(n*Δt)\n", | ||
# @sprintf("uⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(uⁿ), maximum(uⁿ), mean(uⁿ), mean(abs.(uⁿ)), std(uⁿ)), | ||
# @sprintf("vⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(vⁿ), maximum(vⁿ), mean(vⁿ), mean(abs.(vⁿ)), std(vⁿ)), | ||
# @sprintf("wⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(wⁿ), maximum(wⁿ), mean(wⁿ), mean(abs.(wⁿ)), std(wⁿ)), | ||
# @sprintf("Tⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(Tⁿ), maximum(Tⁿ), mean(Tⁿ), mean(abs.(Tⁿ)), std(Tⁿ)), | ||
# @sprintf("Sⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(Sⁿ), maximum(Sⁿ), mean(Sⁿ), mean(abs.(Sⁿ)), std(Sⁿ)), | ||
# @sprintf("pʰʸ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(pʰʸ), maximum(pʰʸ), mean(pʰʸ), mean(abs.(pʰʸ)), std(pʰʸ)), | ||
# @sprintf("pʰʸ′: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(pʰʸ′), maximum(pʰʸ′), mean(pʰʸ′), mean(abs.(pʰʸ′)), std(pʰʸ′)), | ||
# @sprintf("pⁿʰ⁺ˢ:min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(pⁿʰ⁺ˢ), maximum(pⁿʰ⁺ˢ), mean(pⁿʰ⁺ˢ), mean(abs.(pⁿʰ⁺ˢ)), std(pⁿʰ⁺ˢ)), | ||
# @sprintf("pⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(pⁿ), maximum(pⁿ), mean(pⁿ), mean(abs.(pⁿ)), std(pⁿ)), | ||
# @sprintf("ρⁿ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(ρⁿ), maximum(ρⁿ), mean(ρⁿ), mean(abs.(ρⁿ)), std(ρⁿ)), | ||
# @sprintf("δρ: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(δρ), maximum(δρ), mean(δρ), mean(abs.(δρ)), std(δρ)), | ||
# @sprintf("∇⋅u1: min=%.6g, max=%.6g, mean=%.6g, absmean=%.6g, std=%.6g\n", minimum(div_u1), maximum(div_u1), mean(div_u1), mean(abs.(div_u1)), std(div_u1)) | ||
# ) | ||
# end # @info | ||
|
||
Ridx = Int(n/ΔR) | ||
Ru[Ridx, :, :, :] = copy(uⁿ) | ||
# Rv[n, :, :, :] = copy(vⁿ) | ||
Rw[Ridx, :, :, :] = copy(wⁿ) | ||
RT[Ridx, :, :, :] = copy(Tⁿ) | ||
# RS[n, :, :, :] = copy(Sⁿ) | ||
Rρ[Ridx, :, :, :] = copy(ρⁿ) | ||
# RpHY′[n, :, :, :] = copy(pʰʸ′) | ||
RpNHS[Ridx, :, :, :] = copy(pⁿʰ⁺ˢ) | ||
end | ||
end | ||
end | ||
|
||
time_stepping(uⁿ, vⁿ, wⁿ, Tⁿ, Sⁿ, pⁿ, pʰʸ, pʰʸ′, pⁿʰ⁺ˢ, g′, ρⁿ, δρ, Gᵘⁿ, Gᵛⁿ, Gʷⁿ, Gᵀⁿ, Gˢⁿ, Gᵘⁿ⁻¹, Gᵛⁿ⁻¹, Gʷⁿ⁻¹, Gᵀⁿ⁻¹, Gˢⁿ⁻¹, Gᵘⁿ⁺ʰ, Gᵛⁿ⁺ʰ, Gʷⁿ⁺ʰ, Gᵀⁿ⁺ʰ, Gˢⁿ⁺ʰ) | ||
|
||
# This is much faster in Jupyter for some reason... | ||
anim = @animate for tidx in 1:Int(Nᵗ/ΔR) | ||
print("\rframe = $tidx / $(Int(Nᵗ/ΔR)) ") | ||
Plots.heatmap(xC, zC, rotl90(RT[tidx, :, 1, :]) .- 283, color=:plasma, | ||
clims=(-0.03, 0), | ||
# clims=(-maximum(RT[tidx, :, 1, :] .- 283), maximum(RT[tidx, :, 1, :] .- 283)), | ||
title="T change @ t=$(tidx*ΔR*Δt)") | ||
end | ||
mp4(anim, "tracer_T_$(round(Int, time())).mp4", fps = 30) |