-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcandidateElimination.py
38 lines (29 loc) · 1.1 KB
/
candidateElimination.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import pandas as pd
data = pd.DataFrame(pd.read_csv('data2.csv'))
concepts = np.array(data.iloc[:,0:-1])
print(concepts)
target = np.array(data.iloc[:,-1])
print(target)
def learn(concepts, target):
specific_h = concepts[0].copy()
general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
for i, h in enumerate(concepts):
if target[i] == "Yes":
for x in range(len(specific_h)):
if h[x] != specific_h[x]:
specific_h[x] = '?'
general_h[x][x] = '?'
if target[i] == "No":
for x in range(len(specific_h)):
if h[x] != specific_h[x]:
general_h[x][x] = specific_h[x]
else:
general_h[x][x] = '?'
indices = [i for i,val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?']]
for i in indices:
general_h.remove(['?', '?', '?', '?', '?', '?'])
return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("\n\nFinal S:", s_final)
print("\n\nFinal G:", g_final)