Skip to content

Latest commit

 

History

History
42 lines (31 loc) · 2.01 KB

README.md

File metadata and controls

42 lines (31 loc) · 2.01 KB

ML-LAB

Lab Programs

  1. Implement and demonstratethe FIND-Salgorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

  2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithmto output a description of the set of all hypotheses consistent with the training examples.

  3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample.

  4. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

  5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

  6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

  7. Write a program to construct aBayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

  8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

  9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

  10. Implement the non-parametric Locally Weighted Regressionalgorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.