-
Notifications
You must be signed in to change notification settings - Fork 38
/
roaring_buffer_reader.c
1009 lines (913 loc) · 31.3 KB
/
roaring_buffer_reader.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* For some roaringbitmap operation, when the input is serialized binary data,
* maybe only deserializing part of the data is enough. This file provides some
* functions that support direct reading of serialized binary data to improve
* performance in certain scenarios.
*/
#include "roaring_buffer_reader.h"
static inline int32_t keyscardsBinarySearch(const uint16_t *array, int32_t size, uint16_t ikey);
static inline int32_t keyscardsAdvanceUntil(const uint16_t *array, int32_t pos, int32_t length, uint16_t min);
static inline int32_t rb_get_size(const roaring_buffer_t *rb);
static inline uint16_t rb_get_key_at_index(const roaring_buffer_t *rb, uint16_t i);
static void *rb_get_container_at_index(const roaring_buffer_t *rb, uint16_t i, uint8_t *typecode);
static inline int32_t rb_get_index(const roaring_buffer_t *rb, uint16_t x);
static inline int32_t rb_advance_until(const roaring_buffer_t *rb, uint16_t x, int32_t pos);
static bool rb_append_copy_range(roaring_array_t *ra, const roaring_buffer_t *sa,
int32_t start_index, int32_t end_index);
/**
* Good old binary search.
* Assumes that array is sorted, has logarithmic complexity.
* if the result is x, then:
* if ( x>0 ) you have array[x] = ikey
* if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that array[-x-1]=ikey)
* keys the array sorted.
*/
static inline int32_t keyscardsBinarySearch(const uint16_t *array, int32_t size,
uint16_t ikey) {
int32_t low = 0;
int32_t high = size - 1;
while (low <= high) {
int32_t middleIndex = (low + high) >> 1;
uint16_t middleValue = array[middleIndex << 1];
if (middleValue < ikey) {
low = middleIndex + 1;
} else if (middleValue > ikey) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return -(low + 1);
}
/**
* Galloping search
* Assumes that array is sorted, has logarithmic complexity.
* if the result is x, then if x = length, you have that all values in array between pos and length
* are smaller than min.
* otherwise returns the first index x such that array[x] >= min.
*/
static inline int32_t keyscardsAdvanceUntil(const uint16_t *array, int32_t pos,
int32_t length, uint16_t min) {
int32_t lower = pos + 1;
if ((lower >= length) || (array[lower << 1] >= min)) {
return lower;
}
int32_t spansize = 1;
while ((lower + spansize < length) && (array[(lower + spansize) << 1] < min)) {
spansize <<= 1;
}
int32_t upper = (lower + spansize < length) ? lower + spansize : length - 1;
if (array[upper << 1] == min) {
return upper;
}
if (array[upper << 1] < min) {
// means
// array
// has no
// item
// >= min
// pos = array.length;
return length;
}
// we know that the next-smallest span was too small
lower += (spansize >> 1);
int32_t mid = 0;
while (lower + 1 != upper) {
mid = (lower + upper) >> 1;
if (array[mid << 1] == min) {
return mid;
} else if (array[mid << 1] < min) {
lower = mid;
} else {
upper = mid;
}
}
return upper;
}
/**
* Get the number of containers
*/
static inline int32_t rb_get_size(const roaring_buffer_t *rb) { return rb->size; }
/**
* Retrieves the key at index i
*/
static inline uint16_t rb_get_key_at_index(const roaring_buffer_t *rb, uint16_t i) {
return rb->keyscards[i * 2];
}
/**
* Retrieves the container at index i, filling in the typecode
* Return NULL if error occurred.
*/
static void *rb_get_container_at_index(const roaring_buffer_t *rb, uint16_t i,
uint8_t *typecode)
{
if(i < 0 || i >= rb->size) {
fprintf(stderr, "i out of the range.\n");
return NULL;
}
size_t readbytes = rb->offsets[i];
void *answer = NULL;
const char *buf = rb->buf + rb->offsets[i];
uint32_t thiscard = rb->keyscards[2*i+1] + 1;
bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
bool isrun = false;
if(rb->hasrun) {
if((rb->bitmapOfRunContainers[i / 8] & (1 << (i % 8))) != 0) {
isbitmap = false;
isrun = true;
}
}
if (isbitmap) {
// we check that the read is allowed
size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
readbytes += containersize;
if(readbytes > rb->buf_len) {
fprintf(stderr, "Running out of bytes while reading a bitset container.\n");
return NULL;
}
// it is now safe to read
bitset_container_t *c = bitset_container_create();
if(c == NULL) {// memory allocation failure
fprintf(stderr, "Failed to allocate memory for a bitset container.\n");
return NULL;
}
bitset_container_read(thiscard, c, buf);
answer = c;
*typecode = BITSET_CONTAINER_TYPE_CODE;
} else if (isrun) {
// we check that the read is allowed
readbytes += sizeof(uint16_t);
if(readbytes > rb->buf_len) {
fprintf(stderr, "Running out of bytes while reading a run container (header).\n");
return NULL;
}
uint16_t n_runs;
memcpy(&n_runs, buf, sizeof(uint16_t));
size_t containersize = n_runs * sizeof(rle16_t);
readbytes += containersize;
if(readbytes > rb->buf_len) {// data is corrupted?
fprintf(stderr, "Running out of bytes while reading a run container.\n");
return NULL;
}
// it is now safe to read
run_container_t *c = run_container_create();
if(c == NULL) {// memory allocation failure
fprintf(stderr, "Failed to allocate memory for a run container.\n");
return NULL;
}
run_container_read(thiscard, c, buf);
answer = c;
*typecode = RUN_CONTAINER_TYPE_CODE;
} else {
// we check that the read is allowed
size_t containersize = thiscard * sizeof(uint16_t);
readbytes += containersize;
if(readbytes > rb->buf_len) {// data is corrupted?
fprintf(stderr, "Running out of bytes while reading an array container.\n");
return NULL;
}
// it is now safe to read
array_container_t *c =
array_container_create_given_capacity(thiscard);
if(c == NULL) {// memory allocation failure
fprintf(stderr, "Failed to allocate memory for an array container.\n");
return NULL;
}
array_container_read(thiscard, c, buf);
answer = c;
*typecode = ARRAY_CONTAINER_TYPE_CODE;
}
return answer;
}
/**
* Get the index corresponding to a 16-bit key
*/
static inline int32_t rb_get_index(const roaring_buffer_t *rb, uint16_t x){
if ((rb->size == 0) || rb->keyscards[(rb->size - 1) * 2] == x) return rb->size - 1;
return keyscardsBinarySearch(rb->keyscards, rb->size, x);
}
static inline int32_t rb_advance_until(const roaring_buffer_t *rb, uint16_t x,
int32_t pos) {
return keyscardsAdvanceUntil(rb->keyscards, pos, rb->size, x);
}
/**
* Append new key-value pairs to ra, cloning values from rb at indexes
* [start_index, end_index)
* Return false if error occurred.
*
**/
static bool rb_append_copy_range(roaring_array_t *ra, const roaring_buffer_t *rb,
int32_t start_index, int32_t end_index) {
bool ret;
ret = extend_array(ra, end_index - start_index);
if(!ret)
return false;
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
uint8_t container_type = 0;
void *c = rb_get_container_at_index(rb, i, &container_type);
if(c == NULL)
return false;
ra->keys[pos] = rb->keyscards[i * 2];
ra->containers[pos] = c;
ra->typecodes[pos] = container_type;
ra->size++;
}
return true;
}
/**
* Creates a new roaring buffer (from a partable serialized roaringbitmap buffer).
* Returns NULL if error occurred.
*/
roaring_buffer_t *roaring_buffer_create(const char *buf, size_t buf_len){
size_t readbytes;
const char * initbuf = buf;
readbytes = sizeof(int32_t);// for cookie
if(readbytes > buf_len) {
fprintf(stderr, "Ran out of bytes while reading first 4 bytes.\n");
return NULL;
}
uint32_t cookie;
memcpy(&cookie, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
fprintf(stderr, "I failed to find one of the right cookies. Found %" PRIu32 "\n",
cookie);
return NULL;
}
int32_t size;
if ((cookie & 0xFFFF) == SERIAL_COOKIE)
size = (cookie >> 16) + 1;
else {
readbytes += sizeof(int32_t);
if(readbytes > buf_len) {
fprintf(stderr, "Ran out of bytes while reading second part of the cookie.\n");
return NULL;
}
memcpy(&size, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
}
if (size > (1<<16)) {
fprintf(stderr, "You cannot have so many containers, the data must be corrupted: %" PRId32 "\n",
size);
return NULL; // logically impossible
}
const char *bitmapOfRunContainers = NULL;
bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
if (hasrun) {
int32_t s = (size + 7) / 8;
readbytes += s;
if(readbytes > buf_len) {// data is corrupted?
fprintf(stderr, "Ran out of bytes while reading run bitmap.\n");
return NULL;
}
bitmapOfRunContainers = buf;
buf += s;
}
uint16_t *keyscards = (uint16_t *)buf;
readbytes += size * 2 * sizeof(uint16_t);
if(readbytes > buf_len) {
fprintf(stderr, "Ran out of bytes while reading key-cardinality array.\n");
return NULL;
}
buf += size * 2 * sizeof(uint16_t);
/* make sure keyscards is 2 bytes aligned */
bool keyscards_need_free = false;
if ((uintptr_t)keyscards % sizeof(uint16_t) != 0) {
uint16_t * tmpbuf = malloc(size * 2 * sizeof(uint16_t));
if (tmpbuf == NULL) {
fprintf(stderr, "Failed to allocate memory for keyscards. Bailing out.\n");
return NULL;
}
memcpy(tmpbuf, keyscards, size * 2 * sizeof(uint16_t));
keyscards_need_free = true;
keyscards = tmpbuf;
}
uint32_t *offsets = NULL;
bool offsets_need_free = false;
if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
readbytes += size * 4;
if(readbytes > buf_len) {// data is corrupted?
fprintf(stderr, "Ran out of bytes while reading offsets.\n");
if(keyscards_need_free)
free(keyscards);
return NULL;
}
offsets = (uint32_t *)buf;
if ((uintptr_t)offsets % 4 != 0) {
uint32_t * tmpbuf = malloc(size * 4);
if (tmpbuf == NULL) {
fprintf(stderr, "Failed to allocate memory for offsets. Bailing out.\n");
if(keyscards_need_free)
free(keyscards);
return NULL;
}
memcpy(tmpbuf, offsets, size * 4);
offsets_need_free = true;
offsets = tmpbuf;
}
// skipping the offsets
buf += size * 4;
}
else {
offsets = malloc(size * 4);
if (offsets == NULL) {
fprintf(stderr, "Failed to allocate memory for offsets. Bailing out.\n");
if(keyscards_need_free)
free(keyscards);
return NULL;
}
offsets_need_free = true;
// Reading the containers to fill offsets
for (int32_t k = 0; k < size; ++k) {
uint32_t thiscard = keyscards[2*k+1] + 1;
bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
bool isrun = false;
if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
isbitmap = false;
isrun = true;
}
offsets[k] = readbytes;
if (isbitmap) {
size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
readbytes += containersize;
buf += containersize;
} else if (isrun) {
// we check that the read is allowed
readbytes += sizeof(uint16_t);
if(readbytes > buf_len) {
fprintf(stderr, "Running out of bytes while reading a run container (header).\n");
if(keyscards_need_free)
free(keyscards);
free(offsets);
return NULL;
}
uint16_t n_runs;
memcpy(&n_runs, buf, sizeof(uint16_t));
size_t containersize = n_runs * sizeof(rle16_t);
readbytes += containersize;
buf += containersize;
} else {
// we check that the read is allowed
size_t containersize = thiscard * sizeof(uint16_t);
readbytes += containersize;
buf += containersize;
}
}
}
roaring_buffer_t *ans = (roaring_buffer_t *)malloc(sizeof(roaring_buffer_t));
if (ans == NULL) {
fprintf(stderr, "Failed to allocate memory for roaring buffer. Bailing out.\n");
if(keyscards_need_free)
free(keyscards);
if(offsets_need_free)
free(offsets);
return NULL;
}
ans->buf = initbuf;
ans->buf_len = buf_len;
ans->size = size;
ans->keyscards = keyscards;
ans->offsets = offsets;
ans->bitmapOfRunContainers = bitmapOfRunContainers;
ans->hasrun = hasrun;
ans->keyscards_need_free = keyscards_need_free;
ans->offsets_need_free = offsets_need_free;
return ans;
}
/**
* free roaring buffer
*/
void roaring_buffer_free(const roaring_buffer_t *rb) {
if(rb->keyscards_need_free)
free((void *)rb->keyscards);
if(rb->offsets_need_free)
free((void *)rb->offsets);
free((void *)rb);
}
/**
* Get the cardinality of the bitmap (number of elements).
*/
uint64_t roaring_buffer_get_cardinality(const roaring_buffer_t *ra) {
uint64_t card = 0;
for (int i = 0; i < ra->size; ++i)
{
card += ra->keyscards[2*i+1] + 1;
}
return card;
}
/**
* Check if value x is present
* Return false if error occurred.
*/
bool roaring_buffer_contains(const roaring_buffer_t *r,
uint32_t val,
bool *result) {
bool answer;
const uint16_t hb = val >> 16;
/*
* the next function call involves a binary search and lots of branching.
*/
int32_t i = rb_get_index(r, hb);
if (i < 0){
*result = false;
return true;
}
uint8_t typecode;
// next call ought to be cheap
void *container =
rb_get_container_at_index(r, i, &typecode);
if(container == NULL)
{
return false;
}
// rest might be a tad expensive, possibly involving another round of binary search
answer = container_contains(container, val & 0xFFFF, typecode);
container_free(container, typecode);
*result = answer;
return true;
}
/**
* Check if all the elements of ra1 are also in ra2.
* Return false if error occurred.
*/
bool roaring_buffer_is_subset(const roaring_buffer_t *ra1,
const roaring_buffer_t *ra2,
bool *result) {
const int length1 = ra1->size,
length2 = ra2->size;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = rb_get_key_at_index(ra1, pos1);
const uint16_t s2 = rb_get_key_at_index(ra2, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = rb_get_container_at_index(ra1, pos1,
&container_type_1);
if(c1 == NULL)
{
return false;
}
void *c2 = rb_get_container_at_index(ra2, pos2,
&container_type_2);
if(c2 == NULL)
{
container_free(c1, container_type_1);
return false;
}
bool subset =
container_is_subset(c1, container_type_1, c2, container_type_2);
container_free(c1, container_type_1);
container_free(c2, container_type_2);
if (!subset){
*result = false;
return true;
}
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
*result = false;
return true;
} else { // s1 > s2
pos2 = rb_advance_until(ra2, s1, pos2);
}
}
if (pos1 == length1)
*result = true;
else
*result = false;
return true;
}
/**
* Computes the intersection between two bitmaps and returns new bitmap. The
* caller is responsible for memory management.
* Return NULL if error occurred.
*/
roaring_bitmap_t *roaring_buffer_and(const roaring_buffer_t *ra1,
const roaring_buffer_t *ra2) {
uint8_t container_result_type = 0;
const int length1 = ra1->size,
length2 = ra2->size;
uint32_t neededcap = length1 > length2 ? length2 : length1;
roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
if(answer == NULL)
return NULL;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = rb_get_key_at_index(ra1, pos1);
const uint16_t s2 = rb_get_key_at_index(ra2, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = rb_get_container_at_index(ra1, pos1,
&container_type_1);
if(c1 == NULL)
{
roaring_bitmap_free(answer);
return NULL;
}
void *c2 = rb_get_container_at_index(ra2, pos2,
&container_type_2);
if(c2 == NULL)
{
container_free(c1, container_type_1);
roaring_bitmap_free(answer);
return NULL;
}
void *c = container_and(c1, container_type_1, c2, container_type_2,
&container_result_type);
container_free(c1, container_type_1);
container_free(c2, container_type_2);
if(c == NULL)
{
roaring_bitmap_free(answer);
return NULL;
}
if (container_nonzero_cardinality(c, container_result_type)) {
ra_append(&answer->high_low_container, s1, c,
container_result_type);
} else {
container_free(
c, container_result_type); // otherwise:memory leak!
}
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
pos1 = rb_advance_until(ra1, s2, pos1);
} else { // s1 > s2
pos2 = rb_advance_until(ra2, s1, pos2);
}
}
return answer;
}
/**
* Computes the size of the difference (andnot) between two bitmaps.
* Return NULL if error occurred.
*/
roaring_bitmap_t *roaring_buffer_andnot(const roaring_buffer_t *x1,
const roaring_buffer_t *x2) {
bool ret;
uint8_t container_result_type = 0;
const int length1 = x1->size,
length2 = x2->size;
if (0 == length1) {
roaring_bitmap_t *empty_bitmap = roaring_bitmap_create();
return empty_bitmap;
}
if (0 == length2) {
return roaring_bitmap_portable_deserialize(x1->buf);
}
roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1);
if(answer == NULL)
return NULL;
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = 0;
uint16_t s2 = 0;
while (true) {
s1 = rb_get_key_at_index(x1, pos1);
s2 = rb_get_key_at_index(x2, pos2);
if (s1 == s2) {
void *c1 = rb_get_container_at_index(x1, pos1,
&container_type_1);
if(c1 == NULL)
{
roaring_bitmap_free(answer);
return NULL;
}
void *c2 = rb_get_container_at_index(x2, pos2,
&container_type_2);
if(c2 == NULL)
{
container_free(c1, container_type_1);
roaring_bitmap_free(answer);
return NULL;
}
void *c =
container_andnot(c1, container_type_1, c2, container_type_2,
&container_result_type);
container_free(c1, container_type_1);
container_free(c2, container_type_2);
if(c == NULL)
{
roaring_bitmap_free(answer);
return NULL;
}
if (container_nonzero_cardinality(c, container_result_type)) {
ra_append(&answer->high_low_container, s1, c,
container_result_type);
} else {
container_free(c, container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
} else if (s1 < s2) { // s1 < s2
const int next_pos1 = rb_advance_until(x1, s2, pos1);
ret = rb_append_copy_range(&answer->high_low_container,
x1, pos1, next_pos1);
if(!ret)
{
roaring_bitmap_free(answer);
return NULL;
}
// TODO : perhaps some of the copy_on_write should be based on
// answer rather than x1 (more stringent?). Many similar cases
pos1 = next_pos1;
if (pos1 == length1) break;
} else { // s1 > s2
pos2 = rb_advance_until(x2, s1, pos2);
if (pos2 == length2) break;
}
}
if (pos2 == length2) {
ret = rb_append_copy_range(&answer->high_low_container,
x1, pos1, length1);
if(!ret)
{
roaring_bitmap_free(answer);
return NULL;
}
}
return answer;
}
/**
* Computes the size of the intersection between two bitmaps.
* Return false if error occurred.
*/
bool roaring_buffer_and_cardinality(const roaring_buffer_t *x1,
const roaring_buffer_t *x2,
uint64_t *result) {
const int length1 = x1->size,
length2 = x2->size;
uint64_t cardinality = 0;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = rb_get_key_at_index(x1, pos1);
const uint16_t s2 = rb_get_key_at_index(x2, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = rb_get_container_at_index(x1, pos1,
&container_type_1);
if(c1 == NULL)
return false;
void *c2 = rb_get_container_at_index(x2, pos2,
&container_type_2);
if(c2 == NULL)
{
container_free(c1, container_type_1);
return false;
}
cardinality += container_and_cardinality(c1, container_type_1, c2,
container_type_2);
container_free(c1, container_type_1);
container_free(c2, container_type_2);
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
pos1 = rb_advance_until(x1, s2, pos1);
} else { // s1 > s2
pos2 = rb_advance_until(x2, s1, pos2);
}
}
*result = cardinality;
return true;
}
/**
* Computes the size of the union between two bitmaps.
* Return false if error occurred.
*/
bool roaring_buffer_or_cardinality(const roaring_buffer_t *x1,
const roaring_buffer_t *x2,
uint64_t *result) {
bool ret;
uint64_t inter;
const uint64_t c1 = roaring_buffer_get_cardinality(x1);
const uint64_t c2 = roaring_buffer_get_cardinality(x2);
ret = roaring_buffer_and_cardinality(x1, x2, &inter);
if(!ret)
return false;
*result = c1 + c2 - inter;
return true;
}
/**
* Computes the size of the difference (andnot) between two bitmaps.
* Return false if error occurred.
*/
bool roaring_buffer_andnot_cardinality(const roaring_buffer_t *x1,
const roaring_buffer_t *x2,
uint64_t *result) {
bool ret;
uint64_t inter;
const uint64_t c1 = roaring_buffer_get_cardinality(x1);
ret = roaring_buffer_and_cardinality(x1, x2, &inter);
if(!ret)
return false;
*result = c1 - inter;
return true;
}
/**
* Computes the size of the symmetric difference (andnot) between two bitmaps.
* Return false if error occurred.
*/
bool roaring_buffer_xor_cardinality(const roaring_buffer_t *x1,
const roaring_buffer_t *x2,
uint64_t *result) {
bool ret;
uint64_t inter;
const uint64_t c1 = roaring_buffer_get_cardinality(x1);
const uint64_t c2 = roaring_buffer_get_cardinality(x2);
ret = roaring_buffer_and_cardinality(x1, x2, &inter);
if(!ret)
return false;
*result = c1 + c2 - 2 * inter;
return true;
}
/**
* Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
* distance, or the Jaccard similarity coefficient)
*
* The Jaccard index is undefined if both bitmaps are empty.
* Return false if error occurred.
*/
bool roaring_buffer_jaccard_index(const roaring_buffer_t *x1,
const roaring_buffer_t *x2,
double *result) {
bool ret;
uint64_t inter;
const uint64_t c1 = roaring_buffer_get_cardinality(x1);
const uint64_t c2 = roaring_buffer_get_cardinality(x2);
ret = roaring_buffer_and_cardinality(x1, x2, &inter);
if(!ret)
return false;
*result = (double)inter / (double)(c1 + c2 - inter);
return true;
}
/**
* Check whether two bitmaps intersect.
* Return false if error occurred.
*/
bool roaring_buffer_intersect(const roaring_buffer_t *x1,
const roaring_buffer_t *x2,
bool *result) {
const int length1 = x1->size,
length2 = x2->size;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = rb_get_key_at_index(x1, pos1);
const uint16_t s2 = rb_get_key_at_index(x2, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = rb_get_container_at_index(x1, pos1,
&container_type_1);
if(c1 == NULL)
return false;
void *c2 = rb_get_container_at_index(x2, pos2,
&container_type_2);
if(c2 == NULL)
{
container_free(c1, container_type_1);
return false;
}
bool intersect = container_intersect(c1, container_type_1, c2, container_type_2);
container_free(c1, container_type_1);
container_free(c2, container_type_2);
if(intersect){
*result = true;
return true;
}
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
pos1 = rb_advance_until(x1, s2, pos1);
} else { // s1 > s2
pos2 = rb_advance_until(x2, s1, pos2);
}
}
*result = false;
return true;
}
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool roaring_buffer_is_empty(const roaring_buffer_t *rb) {
return rb->size == 0;
}
/**
* Check if the two bitmaps contain the same elements.
* Return false if error occurred.
*/
bool roaring_buffer_equals(const roaring_buffer_t *rb1,
const roaring_buffer_t *rb2,
bool *result) {
if (rb1->size != rb2->size) {
*result = false;
return true;
}
for (int i = 0; i < rb1->size; ++i) {
if (rb1->keyscards[i * 2] !=
rb2->keyscards[i * 2]) {
*result = false;
return true;
}
}
for (int i = 0; i < rb1->size; ++i) {
uint8_t container_type_1, container_type_2;
void *c1 = rb_get_container_at_index(rb1, i,
&container_type_1);
if(c1 == NULL)
return false;
void *c2 = rb_get_container_at_index(rb2, i,
&container_type_2);
if(c2 == NULL)
{
container_free(c1, container_type_1);
return false;
}
bool areequal = container_equals(c1,container_type_1,
c2,container_type_2);
container_free(c1, container_type_1);
container_free(c2, container_type_2);
if (!areequal) {
*result = false;
return true;
}
}
*result = true;
return true;
}
/**
* Count the number of integers that are smaller or equal to x.
* Return false if error occurred.
*/
bool roaring_buffer_rank(const roaring_buffer_t *rb,
uint32_t x,
uint64_t *result) {
uint32_t xhigh = x >> 16;
*result = 0;
for (int i = 0; i < rb->size; i++) {
uint32_t key = rb->keyscards[i * 2];
if (xhigh < key)
{
return true;
}
else
{
uint8_t container_type;
void *c = rb_get_container_at_index(rb, i,
&container_type);
if(c == NULL)
return false;
if (xhigh == key) {
*result += container_rank(c, container_type, x & 0xFFFF);
container_free(c, container_type);
return true;
} else{
*result += container_get_cardinality(c, container_type);
container_free(c, container_type);
}
}
}
return true;
}
/**
* Get the smallest value in the set, or UINT32_MAX if the set is empty.
* Return false if error occurred.
*/
bool roaring_buffer_minimum(const roaring_buffer_t *rb,
uint32_t *result) {
if (rb->size > 0) {
uint8_t typecode;
int i = 0;
uint32_t key = rb->keyscards[i * 2];
void *container = rb_get_container_at_index(rb, i, &typecode);
if(container == NULL)
return false;
uint32_t lowvalue = container_minimum(container, typecode);
*result = lowvalue | (key << 16);
}else {
*result = UINT32_MAX;
}
return true;
}
/**
* Get the greatest value in the set, or 0 if the set is empty.
* Return false if error occurred.
*/
bool roaring_buffer_maximum(const roaring_buffer_t *rb,
uint32_t *result) {
if (rb->size > 0) {
uint8_t typecode;
int i = rb->size - 1;
uint32_t key = rb->keyscards[i * 2];
void *container = rb_get_container_at_index(rb, i, &typecode);
if(container == NULL)