-
Notifications
You must be signed in to change notification settings - Fork 31
/
model.py
74 lines (65 loc) · 3.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
import numpy as np
class IndexTranslator(object):
def __init__(self, state):
self.state = state
self.px = self.state[:, 0].reshape(-1, 1)
self.py = self.state[:, 1].reshape(-1, 1)
self.vx = self.state[:, 2].reshape(-1, 1)
self.vy = self.state[:, 3].reshape(-1, 1)
self.radius = self.state[:, 4].reshape(-1, 1)
self.pgx = self.state[:, 5].reshape(-1, 1)
self.pgy = self.state[:, 6].reshape(-1, 1)
self.v_pref = self.state[:, 7].reshape(-1, 1)
self.theta = self.state[:, 8].reshape(-1, 1)
self.px1 = self.state[:, 9].reshape(-1, 1)
self.py1 = self.state[:, 10].reshape(-1, 1)
self.vx1 = self.state[:, 11].reshape(-1, 1)
self.vy1 = self.state[:, 12].reshape(-1, 1)
self.radius1 = self.state[:, 13].reshape(-1, 1)
class ValueNetwork(nn.Module):
def __init__(self, state_dim, fc_layers, kinematic, reparametrization=True):
super(ValueNetwork, self).__init__()
self.reparametrization = reparametrization
if reparametrization:
state_dim = 15
self.kinematic = kinematic
self.value_network = nn.Sequential(nn.Linear(state_dim, fc_layers[0]), nn.ReLU(),
nn.Linear(fc_layers[0], fc_layers[1]), nn.ReLU(),
nn.Linear(fc_layers[1], fc_layers[2]), nn.ReLU(),
nn.Linear(fc_layers[2], 1))
def rotate(self, state, device):
# first translate the coordinate then rotate around the origin
# 'px', 'py', 'vx', 'vy', 'radius', 'pgx', 'pgy', 'v_pref', 'theta', 'px1', 'py1', 'vx1', 'vy1', 'radius1'
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13
state = IndexTranslator(state.cpu().numpy())
dx = state.pgx - state.px
dy = state.pgy - state.py
rot = np.arctan2(state.pgy-state.py, state.pgx-state.px)
dg = np.linalg.norm(np.concatenate([dx, dy], axis=1), axis=1, keepdims=True)
v_pref = state.v_pref
vx = state.vx * np.cos(rot) + state.vy * np.sin(rot)
vy = state.vy * np.cos(rot) - state.vx * np.sin(rot)
radius = state.radius
if self.kinematic:
theta = state.theta - rot
else:
theta = state.theta
vx1 = state.vx1 * np.cos(rot) + state.vy1 * np.sin(rot)
vy1 = state.vy1 * np.cos(rot) - state.vx1 * np.sin(rot)
px1 = (state.px1 - state.px) * np.cos(rot) + (state.py1 - state.py) * np.sin(rot)
py1 = (state.py1 - state.py) * np.cos(rot) - (state.px1 - state.px) * np.sin(rot)
radius1 = state.radius1
radius_sum = radius + radius1
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
da = np.linalg.norm(np.concatenate([state.px - state.px1, state.py - state.py1], axis=1), axis=1, keepdims=True)
new_state = np.concatenate([dg, v_pref, vx, vy, radius, theta, vx1, vy1, px1, py1,
radius1, radius_sum, cos_theta, sin_theta, da], axis=1)
return torch.Tensor(new_state).to(device)
def forward(self, state, device):
if self.reparametrization:
state = self.rotate(state, device)
value = self.value_network(state)
return value