Skip to content

Latest commit

 

History

History
179 lines (139 loc) · 6.31 KB

README.md

File metadata and controls

179 lines (139 loc) · 6.31 KB

Sequential ConstExpr Neural Network

GitHub GitHub top language

Proof of concept of sequential models of constexpr neural networks. You can do image classification, malware detection (binary classification) and so on in compile time with this library.

Alpha Stage

Any contributions are greatly welcomed. Thank you.

What is this?

You can build your own constexpr neural networks which run in compile time easily. For detailed information, see the documentation (all information in this readme is also in the documentaion).

XOR Example:

// training and evaluating an model in compile time
SCENN_CONSTEXPR auto test() {
  using namespace scenn;
  double X_arr[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
  double Y_arr[4][2] = {{1, 0}, {0, 1}, {0, 1}, {1, 0}};
  auto dataset = Dataset(std::move(X_arr), std::move(Y_arr));
  auto trained_model =
      SequentialNetwork(BinaryCrossEntropy(), DenseLayer<2, 4, double>(),
                        ActivationLayer<4, double>(Sigmoid()),
                        DenseLayer<4, 2, double>(10),
                        ActivationLayer<2, double>(Sigmoid()))
          .train<2>(dataset, 2000, 0.1);
  return std::move(trained_model).evaluate(std::move(dataset));
}

int main() {
  SCENN_CONSTEXPR auto evaluation = test();
  std::cout << evaluation << std::endl; // 4
}

like the Python code with Keras

X_train = numpy.array([[0, 0], [0, 1], [1, 0], [1, 1]])
Y_train = numpy.array([[1, 0], [0, 1], [0, 1], [1, 0]])
model = Sequential([
  Dense(4, input_dim=2),
  Activation('sigmoid'),
  Dense(2, input_dim=4),
  Activation('sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer=SGD(0.1))
model.fit(X_train, Y_train, batch_size=2, epochs=2000)
# Omit the evaluation

MNIST EXAMPLE: To avoid hitting the constexpr evaluation step limit, you need to patch clang-patch.diff to clang. In the below code, we use a subset of MNIST dataset, with 100 train size, 10 test size and 3 classes. To generate the sub-dataset, run

// See https://github.com/maxpumperla/deep_learning_and_the_game_of_go/blob/master/code/dlgo/nn/load_mnist.py
wget https://s3.amazonaws.com/img-datasets/mnist.npz -O mnist.npz

in the tools directory, then use tools/generate_mini_mnist.py.

// training and evaluating an model in compile time
SCENN_CONSTEXPR auto mini_mnist_test() {
  using namespace scenn;
  auto [train_data, test_data] = load_mini_mnist_data<double>();
  auto evaluation =
      SequentialNetwork(CrossEntropy(), DenseLayer<784, 196, double>(),
                        ActivationLayer<196, double>(Sigmoid()),
                        DenseLayer<196, 3, double>(),
                        ActivationLayer<3, double>(Softmax()))
          .train<100>(std::move(train_data), 20, 0.1)
          .evaluate(std::move(test_data));
  return evaluation;
}

int main() {
  SCENN_CONSTEXPR auto evaluation = mini_mnist_test();
  std::cout << evaluation << std::endl; // we see 8
}

Examples

The example codes in the examples directory. The followings are in the directory.

  • XOR
  • MNIST
  • Malware Detection
    • You need the ember dataset to run this example. The citation is H. Anderson and P. Roth, "EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models”, in ArXiv e-prints. Apr. 2018.

How to use?

Requirements

Install

This library is a header-only library.

Include <scenn/scenn.hpp> and you can use all things provided by scenn except for load_mini_mnist_data. To use load_mini_mnist_data function, you need to prepare the mnist sub-dataset by tools/generate_mini_mnist.py and include <scenn/load/mini_mnist.hpp>.

Quick Start

git clone https://github.com/bolero-MURAKAMI/Sprout.git
git clone https://github.com/Catminusminus/scenn.git

export SPROUT_PATH=./Sprout/
export SCENN_PATH=./scenn/

// Run the xor example
clang++ ./scenn/examples/xor.cpp -Wall -Wextra -I$SPROUT_PATH -I$SCENN_PATH -std=gnu++2a -fconstexpr-steps=-1

// After a few hours

./a.out // You will see 4.

Features

For more details, see documentation .

Model

  • scenn::SequentialNetwork
    • SequentialNetwork(loss_function, layers...)
    • train<MiniBatchSize>(training_data, epochs, learning_rate)
    • single_forwatd(test_data)
    • evaluate(test_data)

Layers

  • scenn::DenseLayer<input_dim, output_dim, num_type>(seed)
  • scenn::ActivationLayer<dim, num_type>(activation_function)

Activation

  • scenn::Sigmoid()
  • scenn::HardSigmoid()
  • scenn::Softmax()
  • scenn::ReLU()
  • scenn::ELU(alpha)
  • scenn::SeLU<num_type>()
  • scenn::LeakyReLU(alpha)
  • scenn::ThresholdedReLU(theta)

Loss Function

  • scenn::MSE()
  • scenn::MSLE()
  • scenn::BinaryCrossEntropy()
  • scenn::CrossEntropy()
  • scenn::Hinge()

Limitaion

So many limitaions exist...

  • Only "1D data" (more precisely, not 1D vectors but rank-1 tensors) can be used.
  • Hittig the constexpr evaluation step limit easily.
  • You can run training and evaluating only in compile time, because runtime training and evaluating hit the stack size limit. We are planning to use the heap memory allocation in runtime (we will use std::vector in both cases in C++20).

How it works?

Thanks to Sprout C++ Libraries

Citation

This project is inspired by a neural network in dlgo.

scenn/matrix/matrix.hpp is based on https://github.com/ushitora-anqou/constexpr-nn/blob/master/main.cpp. The license file is LICENSE.constexpr-nn.

The experimental implementation of CNN is inspired by Hajimeteno Deep Learning.

Author

Catminusminus

LICENSE

MIT