- Setting up and working with our development tools
- How to get a shell environment with tools
- How to use helper scripts to fix some common issues
- How to build the code during development
- How to build the code with profiling
- How to setup
haskell-language-server
- How to update the generated Haskell package set
- How to add a new Haskell package
- How to update our pinned Haskell dependencies
- How to update our pinned Nix dependencies
- How to update the Hackage index state
- Working conventions
- Making and reviewing changes
- External contributors
- Supporting systems
Make sure you have set up the prerequisities.
You can get an environment for developing the entire project using nix-shell
in the root directory.
This includes a variety of useful tools:
-
The right version of GHC with all the external Haskell dependencies in its package database.
-
cabal-install
-
Agda with the right libraries set up to build our Agda code
-
stylish-haskell
-
haskell-language-server
-
… and more
Have a look in shell.nix
to see what’s there.
We rely heavily on this approach to ensure that everyone has consistent versions of the tools that we use. Please do make use of this, since problems due to mismatched versions of tools are particularly annoying to fix!
Note
|
You may want to consider using lorri as a convenient alternative to running nix-shell directly.
|
The shell comes with some tools for fixing various simple problems that the CI will complain about. Specifically:
-
fix-stylish-haskell
will re-format all the Haskell sources correctly. -
fix-png-optimization
will optimize all PNGs in the repository. -
updateMaterialized
will update the materialized Nix files (see later).
If you’re not using nix-shell
all the time and you want to run one of these, you can use nix-shell --run
.
The nix-shell
environment has the correct GHC with all the external Haskell dependencies of the project.
From here you can build the project packages directly with cabal
.
Note
|
You may need to run cabal update so that cabal knows about the index state we have pinned.
|
For stack
, you may want to use the Nix integration and point it at shell.nix
, which will make sure you at least get the right GHC.
Warning
|
You can also use
|
If you launch nix-shell
with the enableHaskellProfiling
argument set to true, you will get a shell where all the dependencies have been built with profiling.
Like this: nix-shell --arg enableHaskellProfiling true
.
Warning
|
The shell with profiling dependencies is not currently cached, so this will result in you rebuilding all of our dependencies with profiling on your machine. This will take a long time. |
Once you have a shell with profiling libraries for our dependencies, add profiling: true
to cabal.project.local
, which will tell cabal that you want profiling (in particular, that will cause it to build our libraries with profiling).
Alternatively, you can pass the --enable-profiling
option to cabal
on an ad-hoc basis, but adding the option to cabal.project.local
will make it apply to everything, which is probably what you want when you’re doing profiling work.
At this point you need to configure which cost centres you want GHC to insert.
The GHC user guide explains this very well.
A typical way of doing this is to add -fprof-auto
to either the ghc-options
in the .cabal
file for the project, or in an OPTIONS_GHC
pragma in the module you care about.
Warning
|
Do not set the |
Then you can use the RTS -p
option to dump a profile e.g. cabal run plc … — +RTS -p
.
Warning
|
When building
To resolve it, simply add the following lines in your
|
There are various tools for visualizing the resulting profile, e.g. https://hackage.haskell.org/package/ghc-prof-flamegraph.
The nix-shell
environment has a haskell-language-server
binary for the right version of GHC.
Important
|
this binary is called haskell-language-server , rather than haskell-language-server-wrapper , which is what some of the editor integrations expect.
|
We don’t have a hie.yaml
, the implicit cradle support in HLS seems to work fine these days.
Some of the Nix code that builds all the Haskell packages and their dependencies is generated automatically. However, to avoid doing too much work all the time, we have checked the generated output in.
Important
|
These files needs to be regenerated if you change any dependencies in cabal files. But the CI will tell you if you’ve failed to do so. |
You can regenerate the files by running updateMaterialized
(provided by nix-shell
) from the repository root.
This will also update the plan-256
shas for the extra Haskell tools, if you have a problem iwth that.
You need to do a few things when adding a new package, in the following order:
-
Add the cabal file for the new package.
-
Add the package to
cabal.project
. -
Add the package to
stack.yaml
. -
Update the package set.
-
Update the
hie-*.yaml
files. -
Check that you can run
nix build -f default.nix plutus.haskell.projectPackages.<package name>
successfully.
We have pinned versions of some Haskell packages specified via the usual source-repository-package
(Cabal) and extra-dep
(Stack) mechanisms.
These can be managed normally, but ensure that:
-
The specifications remain in sync between
cabal.project
andstack.yaml
. -
You update the package set.
-
If it is an
source-repository-package
/extra-dep
from Git, you update thesha256
mapping innix/haskell.nix
. For the moment you have to do this by hand, using the following command to get the sha:nix-prefetch-git --quiet <repo-url> <rev> | jq .sha256
, or by just getting it wrong and trying to build it, in which case Nix will give you the right value.
We pin versions of some git repositories that are used by Nix, for example nixpkgs
.
We use Nix flakes to manage these dependencies, even though we do not actually use flakes for normal Nix builds. To manage the dependencies, see the Nix flake inputs documentation and the Nix flake lock command.
Specifically, you will probabl want to say nix flake lock --update-input <input-name>
.
Do not use nix flake update
, as that will update all the inputs, which we typically don’t want to do.
Inside of the project nix-shell, a version of Nix with flakes is available under the alias nix-flakes
.
The Hackage index state is pinned to a particular time in cabal.project
.
This helps with reproducibility: alongside using the same version of cabal
, this ensures that everyone will get the same result from the cabal
version solver.
If you want to use a Hackage package from after the pinned index state time, you need to bump it.
This is not a big deal, since all it does is change what packages cabal
considers to be available when doing solving, but it may result in different versions being picked, so it’s not completely safe.
Note that cabal
itself keeps track of what index states it knows about, so you may need to update this with cabal update
in order for cabal
to be happy.
The Nix code which builds our packages also cares about the index state.
The set of index states which it knows about is controlled by hackage.nix
, which is a Nix representation of Hackage.
This therefore needs to be newer than the index state.
You can update it with the Nix flake commands.
You will need to update the package set after this to reflect the new build plan that Cabal will pick.
We are a relatively large team working on sometimes quite abstruse problems. As such, it’s important that future people who work on the project know how things work, and just as importantly, why. These future people may even be yourself - we forget things very quickly!
When writing, try to put yourself in the position of someone coming to this code for the first time. What do they need to do to understand it and do their job? Write it down!
Code review is a good lens for this: if you have to explain something to a reviewer, then it is probably not clear in the code and should have a note.
This applies both to the code itself (structure, naming, etc.) and also to comments. How to write useful comments is a large topic which we don’t attempt to cover here, but Antirez is good. If in doubt: write more!
One special kind of comment is worth drawing attention to. We adopt a convention (stolen from GHC) of writing fairly substantial notes in our code with a particular structure. These correspond to what Antirez calls "design comments", with some conventions about cross-referencing them.
The structure is:
-
The Note should be in a multiline comment (i.e.
{- -}
) -
The first line of the Note should be
Note [Name of note]
-
Refer to a Note from where it is relevant with a comment saying
See Note [Name of note]
For example:
{- Note [How to write a note] A note should look a bit like this. Go wild, write lots of stuff! Here's a small diagram: A ----> B >> C And of course, you should see Note [Another note]. -}
Notes are a great place to put substantial discussion that you need to refer to from multiple places. For example, if you used an encoding trick to fit more data into an output format, you could write a Note describing the trick (and justifying its usage!), and then refer to it from the encoder and the decoder.
We use stylish-haskell
for Haskell code formatting.
CI checks that running this is a no-op, so if you don’t apply it then your PR will not go green.
To avoid annoyance, set up your editor to run them automatically.
The nix-shell
environment provides a stylish-haskell
binaries of the correct version.
You can run stylish-haskell
over your tree using the fix-stylish-haskell
script provided by the nix-shell
environment.
The CI builds Haskell code with -Werror
, so will fail if there are any compiler warnings.
So fix your own warnings!
If the warnings are stupid, we can turn them off, e.g. sometimes it makes sense to add -Wno-orphans
to a file where we know it’s safe.
Please make informative commit messages! It makes it much easier to work out why things are the way they are when you’re debugging things later.
A commit message is communication, so as usual, put yourself in the position of the reader: what does a reviewer, or someone reading the commit message later need to do their job? Write it down! It is even better to include this information in the code itself, but sometimes it doesn’t belong there (e.g. ticket info).
Also, include any relevant meta-information, such as ticket numbers. If a commit completely addresses a ticket, you can put that in the headline if you want, but it’s fine to just put it in the body.
There is plenty to say on this topic, but broadly the guidelines in this post are good.
A pull request is a change to the codebase, but it is also an artifact which goes through a change acceptance process. There are a bunch of things which we can do to make this process smooth which may have nothing to do with the code itself.
The key bottleneck in getting a PR merged is code review. Code review is great (see below), but it can slow you down if you don’t take the time to make it easy.
The amount of time it’s worth spending doing this is probably much more than you think.
Having a sensible and comprehensible set of changes makes your reviewer’s life much easier.
-
Keep commits to a single logical change where possible. The reviewer will be happier, and you’ll be happier if you ever have to revert it. If you can’t do this (say because you have a huge mess), best to just have one commit with everything in it.
-
Keep your PRs to a single topic. Including unrelated changes makes things harder for your reviewers, slowing them down, and makes it harder to integrate new changes.
-
If you’re working on something that’s likely to conflict with someone else, talk to them. It’s not a race.
A pull request is communication, so as usual, put yourself in the position of the reader: what does your audience (the reviewer) need to know to do their job? This information is easy for you to access, but hard for them to figure out, so write it down!
However, better to put information in the code or commit messages if possible: these persist but PR descriptions do not. It’s okay to repeat information from such places, or simply to point to it. For one-commit PRs, Github will automatically populate the PR description with the commit message, so if you’ve written a good commit message you’re done! Sometimes there is "change-related" information that doesn’t belong in a commit message but is useful ("Kris I think this will fix the issue you had yesterday").
-
Review the diff of your own PR at the last minute before hitting "create". It’s amazing how many obvious things you spot here, and it stops the reviewer having to point them all out.
-
It’s fine to make WIP PRs if you just want to show your code to someone else or have the CI check it. Use the Github "draft" feature for this.
Until a PR is merged, the branch is yours to do with as you will. In particular, rebasing and force-pushing is fine. Indeed, if you need to update your branch with changes from master, rebasing is typically better than merging.
So please do use this ability where it helps, for example:
-
Add low-effort or WIP commits to fix review comments, and then squash them away before merging the PR.
-
If you have already had a PR review, don’t rebase away the old commits until the PR is ready to merge, so that the reviewer only has to look at the "new" commits.
-
Rewrite the commits to make the story clearer where possible.
-
Always prefer
git push --force-with-lease
to justgit push --force
to ensure that no work gets accidentally deleted.
Don’t be obsessive about history though: a little bit of effort making the history clear is nice, but you can rapidly hit diminishing returns. Use your judgement, but probably don’t merge a PR that has commits called "WIP" or "fix"!
If a PR is just a total mess, consider using Github’s squash-merge feature.
All pull-requests should be approved by at least one other person. We don’t enforce this, though: a PR fixing a typo is fine to self-merge, beyond that use your judgement.
As an author, code review is an opportunity for you to get feedback from clear eyes. As a reviewer, code review is an opportunity for you to help your colleagues and learn about what they are doing. Make the best use of it you can!
-
Pick the right reviewer(s). If you don’t know who to pick, ask!
-
Respect your reviewers' time. Their time is as valuable as yours, and it’s typically more efficient for you to spend time explaining or clarifying something in advance than for them to puzzle it out or pose a question.
-
If someone had to ask about your code, it wasn’t clear enough so change it or add a comment.
Read this blog post for more good tips: https://mtlynch.io/code-review-love/
-
Respond to review requests as quickly as you can. If you can’t review it all, say what you can and come back to it. Waiting for review is often a blocker for other people, so prioritize it.
-
If you don’t understand something, ask. You are as clever as any person who will read this in the future, if it confuses you it’s confusing.
-
Do spend the time to understand the code. This will help you make more useful comments, help you review future changes more easily, and help you if you ever need to work on it yourself.
-
More reviewing is usually helpful. If you think a PR is interesting, you can review it even if nobody asked you to, you will probably have things to contribute and you’ll learn something.
Read these blog posts for more good tips: - https://mtlynch.io/human-code-reviews-1/ - https://mtlynch.io/human-code-reviews-2/
Sometimes it is useful to benchmark a PR, and we have some automation for this.
To trigger it, make a comment on the PR with this form: /benchmark <benchmark-component>
, where <benchmark-component>
is as you would provide it to cabal.
For example, if you would run cabal bench plutus-benchmark:validation
locally, then write /benchmark plutus-benchmark:validation
in the comment.
This will trigger a benchmarking job on a stable machine. The job will:
-
Run the specified benchmark on the base of the PR branch.
-
Run the specified benchmark on the tip of the PR branch.
-
Compare the two runs.
-
Post the comparison as a comment to the PR.
The Plutus team welcomes contributions from external contributors. However, it can be difficult for the Plutus team to quickly review contributions from people where we don’t have an existing relationship. For that reason, we ask you to follow these additional guidelines (the rest of the document also applies!), which will make it easier for us to review your work, and therefore make the contributing process smoother for you.
Make sure that any change you make has a corresponding GitHub issue. The issue should describe the problem and describe your proposed solutiion. Before you start working on implementing it, you must get a comment from the Plutus team that the solution seems sensible. This functions as a light "design review" before you get too stuck into doing a PR.
Reviewing the issue makes things easier for the Plutus team (it’s easier to read an issue than a PR); and less frustrating for the contributor (it’s nicer to get design feeback before you have done lots of work on the implementation). We can also offer advice on implementation, or let you know that we’re already planning to fix the issue (or that there is a good reason not to!).
Try to keep your PR focussed on one change. This is a pratice we try to follow generally, but especially for external contributions where reviews tend to be more laborious, it’s good to keep things focussed. If your PR contains a dozen drive-by refactorings, it’s unlikely to be merged as such!
We have a few sources of CI checks at the moment:
-
Hydra
-
ReadTheDocs
-
Github Actions
-
Buildkite
The CI will report statuses on your PRs with links to the logs in case of failure. Pull requests cannot be merged without at least the Hydra CI check being green.
Note
|
This isn’t strictly true: repository admins (notably Michael) can force-merge PRs without the checks being green If you really need this, ask. |
CI checks are run on the tip of the PR branch, not on the merge commit that is created with master. As a result, it’s possible to create a "semantic" merge commit where the CI passes on commits C1 and C2, but not on the merge of C1 and C2. In this circumstance we can end up with the CI checks being broken on master. However, this is sufficiently infrequent that we just live with the possibility, since eliminating it is quite awkward.
Hydra is the "standard" CI builder for Nix-based projects. It builds everything in the project, including all the tests, documentation, etc.
Hydra builds jobs based on release.nix
, although currently this imports a lot of its jobs from ci.nix
(was used for Hercules, may be used again in future).
Hydra should report a failed status even if release.nix
fails to evaluate.
Hydra can be a bit flaky, unfortunately: - If evaluation fails saying "out of memory" or "unexpected EOF reading line", then this is likely a transient failure. These will be automatically retried, but if you’re in a hurry Michael has permissions to force a new evaluation. - If a build fails spuriously, this is a problem: please report it to whoever is responsible for that build and we should try and iron it out. Nondeterministic failures are very annoying. Michael also has permissions to restart failed builds.
The documentation site is built on ReadTheDocs. It will build a preview for each PR which is linked from the PR status. It’s useful to take a look if you’re changing any of the documentation.
These perform some of the same checks as Hydra, but Github Actions is often more available, so they return faster and act as a "smoke check".