-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathefficientnet_lite.py
538 lines (495 loc) · 16.3 KB
/
efficientnet_lite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import copy
import math
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.python.keras import backend
from tensorflow.python.keras.applications import imagenet_utils
from tensorflow.python.keras.utils import layer_utils
from tensorflow.python.lib.io import file_io
DEFAULT_BLOCKS_ARGS = [
{
"kernel_size": 3,
"repeats": 1,
"filters_in": 32,
"filters_out": 16,
"expand_ratio": 1,
"id_skip": True,
"strides": 1,
},
{
"kernel_size": 3,
"repeats": 2,
"filters_in": 16,
"filters_out": 24,
"expand_ratio": 6,
"id_skip": True,
"strides": 2,
},
{
"kernel_size": 5,
"repeats": 2,
"filters_in": 24,
"filters_out": 40,
"expand_ratio": 6,
"id_skip": True,
"strides": 2,
},
{
"kernel_size": 3,
"repeats": 3,
"filters_in": 40,
"filters_out": 80,
"expand_ratio": 6,
"id_skip": True,
"strides": 2,
},
{
"kernel_size": 5,
"repeats": 3,
"filters_in": 80,
"filters_out": 112,
"expand_ratio": 6,
"id_skip": True,
"strides": 1,
},
{
"kernel_size": 5,
"repeats": 4,
"filters_in": 112,
"filters_out": 192,
"expand_ratio": 6,
"id_skip": True,
"strides": 2,
},
{
"kernel_size": 3,
"repeats": 1,
"filters_in": 192,
"filters_out": 320,
"expand_ratio": 6,
"id_skip": True,
"strides": 1,
},
]
CONV_KERNEL_INITIALIZER = {
"class_name": "VarianceScaling",
"config": {"scale": 2.0, "mode": "fan_out", "distribution": "truncated_normal"},
}
DENSE_KERNEL_INITIALIZER = {
"class_name": "VarianceScaling",
"config": {"scale": 1.0 / 3.0, "mode": "fan_out", "distribution": "uniform"},
}
MODEL_TO_WEIGHTS_URL_MAP = {
"efficientnet_lite_b0_notop": "https://www.dropbox.com/s/10cjg2rp2425j9p/efficient_net_lite_b0_notop.h5?dl=1", # noqa:E501
"efficientnet_lite_b0": "https://www.dropbox.com/s/chjjnfts6etvttq/efficient_net_lite_b0.h5?dl=1", # noqa:E501
"efficientnet_lite_b1_notop": "https://www.dropbox.com/s/ydgeg9fgzs1pp45/efficient_net_lite_b1_notop.h5?dl=1", # noqa:E501
"efficientnet_lite_b1": "https://www.dropbox.com/s/sgqx8nyaslxj31u/efficient_net_lite_b1.h5?dl=1", # noqa:E501
"efficientnet_lite_b2_notop": "https://www.dropbox.com/s/2256fxa6wlu4m9t/efficient_net_lite_b2_notop.h5?dl=1", # noqa:E501
"efficientnet_lite_b2": "https://www.dropbox.com/s/5k4oo72o3eksgqe/efficient_net_lite_b2.h5?dl=1", # noqa:E501
"efficientnet_lite_b3_notop": "https://www.dropbox.com/s/uumpv5s39izpji8/efficient_net_lite_b3_notop.h5?dl=1", # noqa:E501
"efficientnet_lite_b3": "https://www.dropbox.com/s/xjyox4e1qj4i2g5/efficient_net_lite_b3.h5?dl=1", # noqa:E501
"efficientnet_lite_b4_notop": "https://www.dropbox.com/s/8dw7ho3clygieic/efficient_net_lite_b4_notop.h5?dl=1", # noqa:E501
"efficientnet_lite_b4": "https://www.dropbox.com/s/3lcpqrw0oudzqet/efficient_net_lite_b4.h5?dl=1", # noqa:E501
}
def EfficientNetLite(
width_coefficient,
depth_coefficient,
default_size,
dropout_rate=0.2,
drop_connect_rate=0.2,
depth_divisor=8,
blocks_args="default",
model_name="efficientnet",
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
):
"""
Instantiate the EfficientNet architecture using given scaling coefficients.
Args:
width_coefficient: float, scaling coefficient for network width.
depth_coefficient: float, scaling coefficient for network depth.
default_size: integer, default input image size.
dropout_rate: float, dropout rate before final classifier layer.
drop_connect_rate: float, dropout rate at skip connections.
depth_divisor: integer, a unit of network width.
blocks_args: list of dicts, parameters to construct block modules.
model_name: string, model name.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: 'imagenet' or path to weights file.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False.
It should have exactly 3 inputs channels.
pooling: when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
classifier_activation: A `str` or callable.
The activation function to use on the "top" layer. Ignored unless
`include_top=True`. Set`classifier_activation=None`
to return the logits of the "top" layer.
Returns:
A `keras.Model` instance.
Raises:
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
ValueError: if `classifier_activation` is not `softmax` or `None` when
using a pretrained top layer.
"""
if blocks_args == "default":
blocks_args = DEFAULT_BLOCKS_ARGS
if not (weights in {"imagenet", None} or file_io.file_exists_v2(weights)):
raise ValueError(
"The `weights` argument should be either "
"`None` (random initialization), `imagenet` "
"(pre-training on ImageNet), "
"or the path to the weights file to be loaded."
)
if weights == "imagenet" and include_top and classes != 1000:
raise ValueError(
'If using `weights` as `"imagenet"` with `include_top`'
" as true, `classes` should be 1000"
)
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
input_shape,
default_size=default_size,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights,
)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
def round_filters(filters, divisor=depth_divisor):
"""Round number of filters based on depth multiplier."""
filters *= width_coefficient
new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += divisor
return int(new_filters)
def round_repeats(repeats):
"""Round number of repeats based on depth multiplier."""
return int(math.ceil(depth_coefficient * repeats))
# Build stem
x = img_input
x = layers.ZeroPadding2D(
padding=imagenet_utils.correct_pad(x, 3), name="stem_conv_pad"
)(x)
x = layers.Conv2D(
32,
3,
strides=2,
padding="valid",
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name="stem_conv",
)(x)
x = layers.BatchNormalization(axis=bn_axis, name="stem_bn")(x)
x = layers.ReLU(max_value=6, name="stem_activation")(x)
# Build blocks
blocks_args = copy.deepcopy(blocks_args)
b = 0
blocks = float(sum(args["repeats"] for args in blocks_args))
for (i, args) in enumerate(blocks_args):
assert args["repeats"] > 0
# Update block input and output filters based on depth multiplier.
args["filters_in"] = round_filters(args["filters_in"])
args["filters_out"] = round_filters(args["filters_out"])
if i == 0 or i == (len(blocks_args) - 1):
repeats = args.pop("repeats")
else:
repeats = round_repeats(args.pop("repeats"))
for j in range(repeats):
# The first block needs to take care of stride and filter size increase.
if j > 0:
args["strides"] = 1
args["filters_in"] = args["filters_out"]
x = block(
x,
drop_connect_rate * b / blocks,
name="block{}{}_".format(i + 1, chr(j + 97)),
**args,
)
b += 1
# Build top
x = layers.Conv2D(
1280,
1,
padding="same",
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name="top_conv",
)(x)
x = layers.BatchNormalization(axis=bn_axis, name="top_bn")(x)
x = layers.ReLU(max_value=6, name="top_activation")(x)
if include_top:
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
if dropout_rate > 0:
x = layers.Dropout(dropout_rate, name="top_dropout")(x)
imagenet_utils.validate_activation(classifier_activation, weights)
x = layers.Dense(
classes,
activation=classifier_activation,
kernel_initializer=DENSE_KERNEL_INITIALIZER,
name="predictions",
)(x)
else:
if pooling == "avg":
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
elif pooling == "max":
x = layers.GlobalMaxPooling2D(name="max_pool")(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = layer_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = tf.keras.Model(inputs, x, name=model_name)
# Load weights.
if weights == "imagenet":
model_variant = "efficientnet_lite_b" + model_name[-1]
if not include_top:
model_variant += "_notop"
download_url = MODEL_TO_WEIGHTS_URL_MAP[model_variant]
filename = f"{model_variant}.h5"
weights_path = tf.keras.utils.get_file(
fname=filename, origin=download_url, cache_subdir="models"
)
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
def block(
inputs,
drop_rate=0.0,
name="",
filters_in=32,
filters_out=16,
kernel_size=3,
strides=1,
expand_ratio=1,
id_skip=True,
):
"""
Create an inverted residual block.
Args:
inputs: input tensor.
drop_rate: float between 0 and 1, fraction of the input units to drop.
name: string, block label.
filters_in: integer, the number of input filters.
filters_out: integer, the number of output filters.
kernel_size: integer, the dimension of the convolution window.
strides: integer, the stride of the convolution.
expand_ratio: integer, scaling coefficient for the input filters.
id_skip: boolean.
Returns:
output tensor for the block.
"""
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
# Expansion phase
filters = filters_in * expand_ratio
if expand_ratio != 1:
x = layers.Conv2D(
filters,
1,
padding="same",
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=name + "expand_conv",
)(inputs)
x = layers.BatchNormalization(axis=bn_axis, name=name + "expand_bn")(x)
x = layers.ReLU(max_value=6, name=name + "expand_activation")(x)
else:
x = inputs
# Depthwise Convolution
if strides == 2:
x = layers.ZeroPadding2D(
padding=imagenet_utils.correct_pad(x, kernel_size), name=name + "dwconv_pad"
)(x)
conv_pad = "valid"
else:
conv_pad = "same"
x = layers.DepthwiseConv2D(
kernel_size,
strides=strides,
padding=conv_pad,
use_bias=False,
depthwise_initializer=CONV_KERNEL_INITIALIZER,
name=name + "dwconv",
)(x)
x = layers.BatchNormalization(axis=bn_axis, name=name + "bn")(x)
x = layers.ReLU(max_value=6, name=name + "activation")(x)
# Skip SE
# Output phase
x = layers.Conv2D(
filters_out,
1,
padding="same",
use_bias=False,
kernel_initializer=CONV_KERNEL_INITIALIZER,
name=name + "project_conv",
)(x)
x = layers.BatchNormalization(axis=bn_axis, name=name + "project_bn")(x)
if id_skip and strides == 1 and filters_in == filters_out:
if drop_rate > 0:
x = layers.Dropout(
drop_rate, noise_shape=(None, 1, 1, 1), name=name + "drop"
)(x)
x = layers.add([x, inputs], name=name + "add")
return x
def EfficientNetLiteB0(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
**kwargs,
):
"""Create Efficient Net Lite B0 variant."""
return EfficientNetLite(
1.0,
1.0,
224,
0.2,
model_name="efficientnetlite0",
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
input_shape=input_shape,
pooling=pooling,
classes=classes,
classifier_activation=classifier_activation,
**kwargs,
)
def EfficientNetLiteB1(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
**kwargs,
):
"""Create Efficient Net Lite B1 variant."""
return EfficientNetLite(
1.0,
1.1,
240,
0.2,
model_name="efficientnetlite1",
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
input_shape=input_shape,
pooling=pooling,
classes=classes,
classifier_activation=classifier_activation,
**kwargs,
)
def EfficientNetLiteB2(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
**kwargs,
):
"""Create Efficient Net Lite B2 variant."""
return EfficientNetLite(
1.1,
1.2,
260,
0.3,
model_name="efficientnetlite2",
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
input_shape=input_shape,
pooling=pooling,
classes=classes,
classifier_activation=classifier_activation,
**kwargs,
)
def EfficientNetLiteB3(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
**kwargs,
):
"""Create Efficient Net Lite B3 variant."""
return EfficientNetLite(
1.2,
1.4,
280,
0.3,
model_name="efficientnetlite3",
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
input_shape=input_shape,
pooling=pooling,
classes=classes,
classifier_activation=classifier_activation,
**kwargs,
)
def EfficientNetLiteB4(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
**kwargs,
):
"""Create Efficient Net Lite B4 variant."""
return EfficientNetLite(
1.4,
1.8,
300,
0.3,
model_name="efficientnetlite4",
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
input_shape=input_shape,
pooling=pooling,
classes=classes,
classifier_activation=classifier_activation,
**kwargs,
)