-
Notifications
You must be signed in to change notification settings - Fork 0
/
overview_k2.py
489 lines (342 loc) · 27.4 KB
/
overview_k2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""
Judah Van Zandt
Python 3
This module is used to compile general information about the state of each target in the SC2A program.
Written: June 1, 2020
Last modified: June 24, 2021
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from astropy.time import Time
from astroplan import Observer, FixedTarget
import astropy.units as u
from astropy.coordinates import SkyCoord
import ephem
import observing as obs
import distantgiants
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
def make_overview(plot = True, observability = False):
"""
With a lot of intermediate steps, this function generates overview_df and an overview plot. They both contain important
information about each target in SC2A.
"""
# distantgiants = pd.read_csv('csv/distantgiants.csv')
##################
distantgiants = pd.read_csv('csv/k2_key_project.csv').rename(columns={'Name':'star_id'})
distantgiants['ra'] = distantgiants['ra']*15
##################
gamma_df = pd.read_csv('csv/K_Distant_Giants_gamma.csv')
sql_df = pd.read_csv('csv/K_Distant_Giants_Observing_Requests.csv')[['star_id', 'instrument', 'counts', 'iodine_in', 'bjd']]
sql_df = pd.merge(distantgiants[['star_id', 'vmag', 'ra', 'dec']], sql_df, on = 'star_id', how = 'inner')
rcs_df = pd.read_csv('csv/rcs_master.csv')[['CPS_NAME', 'Fit preferred (official file name without .py)']]\
.rename(columns={'CPS_NAME':'star_id','Fit preferred (official file name without .py)':'fit_pref'})
rcs_df['fit_pref'] = rcs_df['fit_pref'].fillna('default_cps')
# gam_pref is shorter than distantgiants, meaning that not every target has a preferred radvel fit. Not urgent, but address later
gam_pref = gamma_df.merge(rcs_df, left_on = ['star_id', 'runname'], right_on = ['star_id', 'fit_pref']).drop(['runname','fit_pref'], axis=1)
gam_pref = gam_pref.drop_duplicates(subset='star_id')
sql_df = pd.merge(sql_df, gam_pref, on = 'star_id', how = 'left')
# We want to find templates by excluding 10k recon spectra (on HIRES). Also take obs with counts < 0 b/c in May/Jun 2021 exposure meter was broken, so all obs have exp_count = -1 (and I didn't request and recon spectra). At most 9 systems have such templates (I can find them later by removing the counts < 0 option).
# 5.4E8 counts on APF is the same as 60k on HIRES, so a recon spectrum on APF would have ~9E7 counts
template_apf = sql_df.query('instrument == "apf" and counts > 9e7 and iodine_in == "f"').sort_values(by=['star_id', 'iodine_in', 'counts']).drop_duplicates(subset=['star_id', 'instrument'], keep = 'last')[['star_id', 'bjd', 'counts', 'iodine_in']].rename(columns = {'bjd':'apf_template_bjd'}).replace(np.nan, 0)
# template_hires = sql_df.query('instrument == "hires_j" and (counts > 6e4 or counts < 0) and iodine_in == "f"').sort_values(by=['star_id', 'iodine_in', 'counts']).drop_duplicates(subset=['star_id', 'instrument'], keep = 'last')[['star_id', 'bjd', 'counts', 'iodine_in']].rename(columns = {'bjd':'hires_template_bjd'}).replace(np.nan, 0)
template_hires = sql_df.query('instrument == "hires_j" and counts > 6e4 and iodine_in == "f"').sort_values(by=['star_id', 'iodine_in', 'counts']).drop_duplicates(subset=['star_id', 'instrument'], keep = 'last')[['star_id', 'bjd', 'counts', 'iodine_in']].rename(columns = {'bjd':'hires_template_bjd'}).replace(np.nan, 0)
template_df = pd.merge(template_apf[['star_id', 'apf_template_bjd']], template_hires[['star_id', 'hires_template_bjd']], on = 'star_id', how = 'outer')
distantgiants = pd.merge(distantgiants, template_df, on = 'star_id', how = 'left')
# What is this line? Delete?
distantgiants[['apf_template_bjd', 'hires_template_bjd']] = distantgiants[['apf_template_bjd', 'hires_template_bjd']]
distantgiants['have_template'] = list(map(lambda x, y: 'NO' if np.isnan(x) and np.isnan(y) else 'YES', distantgiants['apf_template_bjd'], distantgiants['hires_template_bjd']))
full_star_list = pd.merge(sql_df.drop_duplicates(subset = 'star_id'), \
distantgiants.drop_duplicates(subset = 'star_id'), \
on = 'star_id', how = 'outer')['star_id'].to_frame()
# Stars that need recon
sql_df['day'] = Time(sql_df['bjd'], format='jd', scale='utc', out_subfmt='date').iso
sql_df_yesiod = sql_df.query("iodine_in == 't'").reset_index(drop = True)
sql_df_noiod = sql_df.query("iodine_in == 'f'").reset_index(drop = True)
recon_df = pd.merge(sql_df_noiod.query('counts >= 4500')[['star_id', 'instrument', 'bjd']].\
sort_values(['star_id', 'bjd']).drop_duplicates\
(subset = 'star_id', keep = 'first'), full_star_list['star_id'], \
on = 'star_id', how = 'outer').rename(columns = {'bjd':'bjd_recon'}).\
rename(columns = {'instrument':'instrument_recon'})
recon_df['have_recon'] = list(map(lambda x: 0 if pd.isna(x) else 1, recon_df['bjd_recon']))
# Stars that need jitter tests
# Create a groupby so that size() gives the number of rows in each (star, day, instrument) group
grouped_list = sql_df_yesiod.groupby(by=['star_id', 'day', 'instrument'])
# has_jitter just asks if a single star got 3 observations in a single (UT) day. Don't they need to be separated by ~1 hour? Maybe just on the same (UT) day is good enough.
has_jitter = grouped_list.size().to_frame().reset_index().rename(columns = {0:'count'}).query('count >= 3 and instrument == "hires_j"').sort_values(['star_id', 'day']).drop_duplicates(subset = 'star_id', keep = 'first')
jitter_df = pd.merge(has_jitter, full_star_list, on = 'star_id', how = 'outer')
jitter_df['have_jitter'] = list(map(lambda x: 0 if pd.isna(x) else 1, jitter_df['count']))
jitter_df['bjd_jitter'] = list(map(lambda x: x if pd.isna(x) else Time(x, format = 'iso', out_subfmt = 'date').jd, jitter_df['day']))
# dates_df gives every observation and its jd, sorted so that the most and least recent can be picked for each target
# latest_obs finds the most recent observation with both HIRES and APF for each target
dates_df = pd.merge(sql_df_yesiod[['star_id', 'instrument', 'bjd']].sort_values(by = ['star_id', 'instrument', 'bjd']).reset_index(drop = True),\
full_star_list, on = 'star_id', how = 'outer')
latest_obs = dates_df.drop_duplicates(subset = ['star_id', 'instrument'], keep = 'last')
earliest_obs = dates_df.drop_duplicates(subset = ['star_id', 'instrument'], keep = 'first')
# Adding columns for the most recent HIRES and APF iodine-in obs to overview_df. Displayed as days since last obs.
last_obs_hires = pd.DataFrame({'star_id': latest_obs.query("instrument == 'hires_j'")['star_id'], \
'last_obs_hires': -latest_obs.query("instrument == 'hires_j'")['bjd'].\
subtract(Time(Time.now().iso, out_subfmt='date').jd)})
last_obs_apf = pd.DataFrame({'star_id': latest_obs.query("instrument == 'apf'")['star_id'], \
'last_obs_apf': -latest_obs.query("instrument == 'apf'")['bjd'].\
subtract(Time(Time.now().iso, out_subfmt='date').jd)})
# Creating overview_df to show general information
overview_df = recon_df[['star_id', 'have_recon']]
overview_df = pd.merge(overview_df, jitter_df[['star_id', 'have_jitter']], how = 'outer', on = 'star_id')
overview_df = pd.merge(overview_df, distantgiants[['star_id', 'have_template']], how = 'outer', on = 'star_id') # Stars that need templates
overview_df = pd.merge(overview_df,
pd.DataFrame(sql_df_yesiod.groupby(by=['star_id', 'instrument']).size()).reset_index().\
rename(columns = {0: 'tot_iodine_hires'}).query("instrument == 'hires_j'").drop(columns = {'instrument'}),
how = 'outer', on = 'star_id')
overview_df = pd.merge(overview_df,
pd.DataFrame(sql_df_yesiod.groupby(by=['star_id', 'instrument']).size()).reset_index().\
rename(columns = {0: 'tot_iodine_apf'}).query("instrument == 'apf'").drop(columns = {'instrument'}),
how = 'outer', on = 'star_id')
overview_df = pd.merge(overview_df, last_obs_hires, on = 'star_id', how = 'outer')
overview_df = pd.merge(overview_df, last_obs_apf, on = 'star_id', how = 'outer')
# Creating HIRES and APF baselines and adding them to overview_df
baseline_hires = pd.DataFrame({'star_id': latest_obs.query("instrument == 'hires_j'")['star_id'].reset_index(drop = True),\
'baseline_hires': latest_obs.query("instrument == 'hires_j'")['bjd'].reset_index(drop = True) - \
earliest_obs.query("instrument == 'hires_j'")['bjd'].reset_index(drop = True)})
baseline_apf = pd.DataFrame({'star_id': latest_obs.query("instrument == 'apf'")['star_id'].reset_index(drop = True),\
'baseline_apf': latest_obs.query("instrument == 'apf'")['bjd'].reset_index(drop = True) - \
earliest_obs.query("instrument == 'apf'")['bjd'].reset_index(drop = True)})
overview_df = pd.merge(overview_df, baseline_hires, on = 'star_id', how = 'outer')
overview_df = pd.merge(overview_df, baseline_apf, on = 'star_id', how = 'outer')
# Cleaning up overview_df
overview_df.replace({'have_recon':{0:'NO', 1:'YES'},
'have_jitter':{0:'NO', 1:'YES'}},
inplace=True)
overview_df.update(overview_df[['tot_iodine_hires', 'tot_iodine_apf']].fillna(0))
overview_df.update(overview_df[['last_obs_hires', 'last_obs_apf']].fillna(np.inf))
overview_df.update(overview_df[['baseline_hires', 'baseline_apf']].fillna('N/A'))
# Add a new column 'cooked?' to indicate any target with both a 3+ year baseline and 40+ observations.
cooked = []
for i in range(len(overview_df)):
if isinstance(overview_df['baseline_hires'][i], str):
baseline_hires = 0
elif isinstance(overview_df['baseline_hires'][i], float):
baseline_hires = float(overview_df['baseline_hires'][i])
else:
print('Error: type is neither str nor float')
print(type(overview_df['baseline_hires'][i]))
if isinstance(overview_df['baseline_apf'][i], str):
baseline_apf = 0
elif isinstance(overview_df['baseline_apf'][i], float):
baseline_apf = float(overview_df['baseline_apf'][i])
else:
print('Error: type is neither str nor float')
print(type(overview_df['baseline_apf'][i]))
if (baseline_hires > 1095 or baseline_apf >= 1095) and\
(overview_df['tot_iodine_hires'][i] + overview_df['tot_iodine_apf'][i] >= 40):
cooked.append('COOKED')
else:
cooked.append('cookin')
overview_df['cooked?'] = cooked
# I've commented this line out to keep from cutting on membership in distantgiants
overview_df = pd.merge(overview_df, sql_df.drop_duplicates(subset = 'star_id')[['star_id', 'vmag', 'ra', 'dec', 'dvdt', 'curv', 'u_dvdt', 'u_curv']], on = 'star_id')
overview_df = overview_df.rename(columns = {'ra':'ra_deg', 'dec':'dec_deg'})
if plot == True:
# Creating plot_df with all of the information to create an image with an overview for each target
plot_df = pd.merge(overview_df, recon_df.drop(columns = 'have_recon'), on = 'star_id')
plot_df = pd.merge(plot_df, template_df, on = 'star_id', how = 'left')
plot_df = pd.merge(plot_df, jitter_df.drop(columns = 'have_jitter'), on = 'star_id')[['star_id', 'instrument_recon', 'tot_iodine_hires', 'tot_iodine_apf', 'bjd_recon', 'bjd_jitter', 'apf_template_bjd', 'hires_template_bjd', 'have_template', 'cooked?', 'last_obs_hires', 'last_obs_apf', 'ra_deg', 'dec_deg', 'dvdt', 'curv', 'u_dvdt', 'u_curv']]
# Initializing variables for the plot
y_length = np.arange(len(plot_df['star_id']))[::-1]
y_increment = (y_length[1]-y_length[0])
display_window = 100
keck = Observer.at_site('W. M. Keck Observatory') # Site for astroplan to get sunrise/set
observatory = obs.setupObservatory('keck') # Site for Ian's observing code
# start_date = Time.now().jd-2*display_window/3
# end_date = Time.now().jd+display_window/3
start_date = Time.now().jd - 2400
end_date = Time.now().jd - 20
sidereal_offset = 0.002731 # This is how much earlier a target rises each day (in days), ~3.9 minutes
# Dates to display on the x-axis. Roughly one tick per month by dividing the window by 30
date_intervals_jd = np.linspace(start_date, end_date, int(display_window/30 + 1))
date_intervals_iso = Time(date_intervals_jd, format = 'jd', out_subfmt = 'date').iso
recon_color = 'green'
template_color = 'black'
jitter_color = 'pink'
color_hires = 'red'
color_apf = 'blue'
######################
# Making the plot
######################
fig, ax = plt.subplots(figsize=(14, 8), dpi= 100, facecolor='w', edgecolor='k')
z_order_list = z_order_list = ['observability', 'h_line_plot', 'rv_pts', 'recon_pts', 'template_pts', 'jitter_pts', 'recon_arrows', 'jitter_arrows']
plt.hlines(y_length, start_date, end_date, colors = ['black', 'gray'], linewidths = 0.2, zorder = z_order_list.index('h_line_plot'))
plt.grid(b = True, which = 'major', axis = 'x', linewidth = .2)
ax.set_xlim(start_date, end_date)
plot_df = plot_df.sort_values(by = 'ra_deg', ignore_index = True)
# Plotting the dates of each star's recon and jitter
recon_pts = ax.scatter(plot_df['bjd_recon'], y_length, color = recon_color, s=6, zorder = z_order_list.index('recon_pts'))
jitter_pts = ax.scatter(plot_df['bjd_jitter'], y_length, color = jitter_color, s=6, zorder = z_order_list.index('jitter_pts'))
apf_template_pts = ax.scatter(plot_df['apf_template_bjd'], y_length, color = 'black', marker = '*', s=30, zorder = z_order_list.index('template_pts'))
hires_template_pts = ax.scatter(plot_df['hires_template_bjd'], y_length, color = 'black', marker = '*', s=30, zorder = z_order_list.index('template_pts'))
# ax.text(start_date-23, y_length[0]+1, 'J?', size = 12, horizontalalignment = 'right')
# ax.text(start_date-18, y_length[0]+1, 'T?', size = 12, horizontalalignment = 'right')
ax.text(end_date+3, y_length[0]+1, 'Nobs', size = 12)
# ax.text(end_date+17, y_length[0]+1, 'Last Obs', size = 12)
# ax.text(end_date+37, y_length[0]+1, r'$\dot{\gamma}$', size = 14)
# ax.text(end_date+43, y_length[0]+1, r'$\ddot{\gamma}$', size = 14)
for i in range(len(plot_df)):
# Put star name on right and left vertical axes, with cooked targets faded
if plot_df['cooked?'][i] == 'cookin':
alpha = 1
elif plot_df['cooked?'][i] == 'COOKED':
alpha = 0.5
if plot_df['have_template'][i] == 'YES':
template_facecolors = 'k'
else:
template_facecolors = 'none'
if not np.isnan(plot_df['bjd_jitter'][i]):
jitter_facecolors = 'k'
else:
jitter_facecolors = 'none'
###############
if abs(plot_df['dvdt'][i]) > 0 and abs(plot_df['dvdt'][i]) >= 3*abs(plot_df['u_dvdt'][i]):
trend_facecolors = 'k'
else:
trend_facecolors = 'none'
if abs(plot_df['curv'][i]) > 0 and abs(plot_df['curv'][i]) >= 3*abs(plot_df['u_curv'][i]):
curv_facecolors = 'k'
print(plot_df['star_id'][i], plot_df['curv'][i], plot_df['u_curv'][i])
else:
curv_facecolors = 'none'
################
last_obs = np.min([plot_df.iloc[i]['last_obs_hires'], plot_df.iloc[i]['last_obs_apf']])
gap_list = [20, 30, 60]
color_list = ['gold', 'orange', 'red']
last_obs_color = 'k'
for j in range(len(gap_list)):
if last_obs > gap_list[j]:
last_obs_color = color_list[j]
# Plotting the name of each star on the y-axis
ax.text(start_date-1, y_length[i]+0.3*y_increment, plot_df['star_id'][i], size = 7, alpha = alpha, horizontalalignment = 'right')
# Template and jitter
#ax.scatter(start_date-20, y_length[i], s=14, marker = 'o', color = 'k', facecolors = template_facecolors, clip_on=False)
#ax.scatter(start_date-25, y_length[i], s=14, marker = 'o', color = 'k', facecolors = jitter_facecolors, clip_on=False)
# Number of iodine-in obs
ax.text(end_date+3, y_length[i]-.3, s='{:.0f}'.format(plot_df.iloc[i]['tot_iodine_hires'] + plot_df.iloc[i]['tot_iodine_apf']), size=12)
# Days since last observation
# ax.text(end_date+17, y_length[i]-.3, s='{:.0f}'.format(last_obs), size=12, color=last_obs_color)
# Trend or curvature detected?
#ax.scatter(end_date+38, y_length[i], s=14, marker = 'o', color = 'k', facecolors = trend_facecolors, clip_on=False)
#ax.scatter(end_date+44, y_length[i], s=14, marker = 'o', color = 'k', facecolors = curv_facecolors, clip_on=False)
# If a target got recon or jitter before the earliest displayed date, use an arrow
if plot_df['bjd_recon'][i] < start_date:
ax.scatter(start_date+0.5, y_length[i] - 0.25*y_increment, marker = '<', color = recon_color, s=10, zorder = z_order_list.index('recon_arrows'))
if plot_df['bjd_jitter'][i] < start_date:
ax.scatter(start_date+0.5, y_length[i] + 0.25*y_increment, marker = '<', color = jitter_color, s=10, zorder = z_order_list.index('recon_arrows'))
### Observability ###
# Plotting observability bars takes a while; pick how many stars you want bars for here.
# Also I've tried plotting observability according to cpsutils as in target_request_generator. That way agrees better with Jump (no surprise there) but it takes ~twice as long to run. We're stuck with this for now I think.
if observability == True:
star_name = plot_df['star_id'][i]
ra_deg = plot_df['ra_deg'][i]
dec_deg = plot_df['dec_deg'][i]
full_marker_list = []
star_marker_list = []
print(star_name)
star_target = obs.setupTarget(ra_deg, dec_deg, star_name)
# List of all days from start_date to end_date, incrementing by one sidereal day to get back to the same sidereal time. I believe this will avoid eventually missing a day, and will instead double count a day each time the sidereal offset adds up to a whole day.
day_list = [start_date + i*(1-sidereal_offset) for i in range(int(end_date-start_date))]
for day in day_list:
# Find the next time the sun sets
sunset_time = keck.sun_set_time(Time(day, format='jd'), which = 'next', horizon = -12*u.deg)
# Find the sunrise that follows the next sunset
sunrise_time = keck.sun_rise_time(Time(sunset_time, format='jd'), which = 'next', horizon = -12*u.deg)
# Divide the night into ~minutes, erring on the side of finer-than-minute sampling
night_division = int(np.ceil((sunrise_time - sunset_time).jd*24*60))
time_list = np.linspace(sunset_time.jd, sunrise_time.jd, night_division)
# vis is an output of Ian's code. It is an array of tuples of the form (date, bool), where bool expresses the observability at the jd date.
vis = obs.isObservable(time_list, observatory, star_target)
########## The truth counter starts at 0 and increments for each minute of observability. After 30 consecutive minutes, the target is considered observable for that night.
truth_counter = 0
for truth_value in vis:
if truth_value:
truth_counter += 1
if truth_counter == 30:
# On the first night, initialize old_observability
if day_list.index(day) == 0:
old_observability = True
# After the first night, assign the value to current_observability instead
else:
current_observability = True
break
elif not truth_value:
truth_counter = 0
if day_list.index(day) == 0:
old_observability = False
else:
current_observability = False
if day_list.index(day) == 0:
star_marker_list.append((sunset_time.jd, old_observability))
elif current_observability != old_observability:
star_marker_list.append((sunset_time.jd, current_observability))
old_observability = current_observability
# star_marker_list gives the 'landmark' dates for a target, where it transitions from being observable to unobservable, or vice versa
star_marker_list.append((end_date, False))
#######
# print(star_marker_list)
# Break down star_marker_list into dates and boolean values for plotting
date_list, truth_list = np.transpose(np.vstack(star_marker_list))[0], np.transpose(np.vstack(star_marker_list))[1]
for j in range(len(truth_list)):
if truth_list[j]:
plt.hlines(y_length[i], date_list[j], date_list[j+1], colors = ['gray'],
linewidths = 4, alpha = 0.5, zorder = z_order_list.index('observability'))
cadenced_hires_dates = []
cadenced_hires_y = []
cadenced_apf_dates = []
cadenced_apf_y = []
for i in range(len(sql_df_yesiod)):
index_of_planet_in_plot_df = pd.Index(plot_df['star_id']).get_loc(sql_df_yesiod['star_id'][i])
if sql_df_yesiod['instrument'][i] == 'hires_j':
cadenced_hires_dates.append(sql_df_yesiod['bjd'][i])
cadenced_hires_y.append(y_length[index_of_planet_in_plot_df])
elif sql_df_yesiod['instrument'][i] == 'apf':
cadenced_apf_dates.append(sql_df_yesiod['bjd'][i])
cadenced_apf_y.append(y_length[index_of_planet_in_plot_df])
cadenced_hires_rvs = ax.scatter(cadenced_hires_dates, cadenced_hires_y - 0.15*(y_length[1]-y_length[0]), marker = 'v',
color = color_hires, s = 10, zorder=z_order_list.index('rv_pts'))
cadenced_apf_rvs = ax.scatter(cadenced_apf_dates, cadenced_apf_y - 0.15*(y_length[1]-y_length[0]), marker = 'v',
color = color_apf, s = 10, zorder=z_order_list.index('rv_pts'))
############
observing_schedule_df = pd.read_csv('../jump-config/allocations/hires_j/hires_schedule_2021A.csv')[['Date', 'start', 'stop']]
# The schedule has multiple rows for some nights because the nights were paid for by 2 programs. This chunk combines the duplicate lines and their night fractions. It can NOT account for non-contiguous observing periods. For example, if CPS has the first 1/4 of the night, then we hand off for the second 1/4, then we get it back for the second half, this chunk will think we have the whole night.
for i in observing_schedule_df.drop_duplicates(subset='Date')['Date']:
if len(observing_schedule_df.query('Date == "{}"'.format(i))) > 1:
index_list = observing_schedule_df.query('Date == "{}"'.format(i)).index
date = observing_schedule_df['Date'][index_list[0]]
start = observing_schedule_df['start'][index_list[0]]
stop = observing_schedule_df['stop'][index_list[-1]]
observing_schedule_df = observing_schedule_df.drop(index_list).reset_index(drop=True)
observing_schedule_df = observing_schedule_df.append(pd.DataFrame({'Date':[date], 'start':[start], 'stop':[stop]})).reset_index(drop=True)
observing_schedule_df = observing_schedule_df.sort_values(by='Date').reset_index(drop=True)
# The dates in the schedule are given for Hawaii time at midnight that morning. If we start observing Jan 1 at 6 pm Hawaii time, then the JD is Jan 2 at 5 am. 6 pm is early, but we don't need to be too precise because we are going to find the next sunset time anyway.
observing_dates = Time(observing_schedule_df['Date'].values.tolist(), format='iso').jd + 1 + 5/24
# Uses the fact that dates are in chronological order, so the min index corresponds to the earliest date
# index_of_next_date = min([np.where(observing_dates == i) for i in observing_dates if i > Time.now().jd])[0][0]
############
# line_today, = ax.plot((Time.now().jd, Time.now().jd), (y_length[0], y_length[-1]), c = 'gray', linestyle = 'dashed')
# line_15, = ax.plot((Time.now().jd-15, Time.now().jd-15), (y_length[0], y_length[-1]), c = 'gray', linestyle = 'dotted')
# line_25, = ax.plot((Time.now().jd-25, Time.now().jd-25), (y_length[0], y_length[-1]), c = 'black', linestyle = 'dashdot')
# next_obs = [observing_dates[index_of_next_date+n] for n in range(1)]
# next_obs = [Time('2021-02-21', format = 'iso').jd]
# for i in next_obs:
# line_next_obs, = ax.plot((i, i), (y_length[0], y_length[-1]), linewidth = 1, c = 'red')
plt.xticks(date_intervals_jd, date_intervals_iso, fontsize = 8)
plt.yticks([], [], size = 14)
# ax.legend([recon_pts, jitter_pts, hires_template_pts, apf_template_pts, cadenced_hires_rvs, cadenced_apf_rvs, line_today, line_25, line_15, line_next_obs], ['Recon', 'Jitter', 'HIRES Template', 'APF Template', 'HIRES', 'APF', 'Today', '25', '15', 'Future Nights'], loc = (0.10,1.02), prop = {'size':10}, ncol = 4)
ax.legend([recon_pts, jitter_pts, hires_template_pts, apf_template_pts, cadenced_hires_rvs, cadenced_apf_rvs], ['Recon', 'Jitter', 'HIRES Template', 'APF Template', 'HIRES', 'APF'], loc = (0.30,1.02), prop = {'size':10}, ncol = 4);
fig.tight_layout()
plt.savefig('csv/overview_plot.jpg', dpi = 500, pil_kwargs={'quality':95})
plt.show()
return overview_df
def update_overview(overview_df):
overview_df.to_csv('csv/overview_df.csv', index = False)
print('Updated overview_df.csv')
if __name__ == "__main__":
update_overview(make_overview(plot = True, observability = False))