-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainer.py
316 lines (285 loc) · 13.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import pdb
import math
import time
import json
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd
# from transformers.optimization import get_scheduler
from tqdm.autonotebook import trange
from loguru import logger
import constants
from evaluator import predict, get_eval_metric_fn, EarlyStopping
from modeling_transtab import TransTabFeatureExtractor
from trainer_utils import SupervisedTrainCollator, TrainDataset
from trainer_utils import get_parameter_names
from trainer_utils import get_scheduler
class Trainer:
def __init__(self,
model,
train_set_list,
test_set_list=None,
collate_fn=None,
output_dir='./ckpt',
num_epoch=10,
batch_size=64,
lr=1e-4,
weight_decay=0,
patience=5,
eval_batch_size=256,
warmup_ratio=None,
warmup_steps=None,
balance_sample=False,
load_best_at_last=True,
ignore_duplicate_cols=False,
eval_metric='auc',
eval_less_is_better=False,
num_workers=0,
**kwargs,
):
'''args:
train_set_list: a list of training sets [(x_1,y_1),(x_2,y_2),...]
test_set_list: a list of tuples of test set (x, y), same as train_set_list. if set None, do not do evaluation and early stopping
patience: the max number of early stop patience
num_workers: how many workers used to process dataloader. recommend to be 0 if training data smaller than 10000.
eval_less_is_better: if the set eval_metric is the less the better. For val_loss, it should be set True.
'''
self.model = model
if isinstance(train_set_list, tuple): train_set_list = [train_set_list]
if isinstance(test_set_list, tuple): test_set_list = [test_set_list]
self.train_set_list = train_set_list
self.test_set_list = test_set_list
self.collate_fn = collate_fn
if collate_fn is None:
self.collate_fn = SupervisedTrainCollator(
categorical_columns=model.categorical_columns,
numerical_columns=model.numerical_columns,
binary_columns=model.binary_columns,
ignore_duplicate_cols=ignore_duplicate_cols,
)
self.trainloader_list = [
self._build_dataloader(trainset, batch_size, collator=self.collate_fn, num_workers=num_workers) for trainset in train_set_list
]
if test_set_list is not None:
self.testloader_list = [
self._build_dataloader(testset, eval_batch_size, collator=self.collate_fn, num_workers=num_workers, shuffle=False) for testset in test_set_list
]
else:
self.testloader_list = None
self.test_set_list = test_set_list
self.output_dir = output_dir
self.early_stopping = EarlyStopping(output_dir=output_dir, patience=patience, verbose=False, less_is_better=eval_less_is_better)
self.args = {
'lr':lr,
'weight_decay':weight_decay,
'batch_size':batch_size,
'num_epoch':num_epoch,
'eval_batch_size':eval_batch_size,
'warmup_ratio': warmup_ratio,
'warmup_steps': warmup_steps,
'num_training_steps': self.get_num_train_steps(train_set_list, num_epoch, batch_size),
'eval_metric': get_eval_metric_fn(eval_metric),
'eval_metric_name': eval_metric,
}
self.args['steps_per_epoch'] = int(self.args['num_training_steps'] / (num_epoch*len(self.train_set_list)))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
self.optimizer = None
self.lr_scheduler = None
self.balance_sample = balance_sample
self.load_best_at_last = load_best_at_last
def train(self):
args = self.args
self.create_optimizer()
if args['warmup_ratio'] is not None or args['warmup_steps'] is not None:
num_train_steps = args['num_training_steps']
logger.info(f'set warmup training in initial {num_train_steps} steps')
self.create_scheduler(num_train_steps, self.optimizer)
start_time = time.time()
for epoch in trange(args['num_epoch'], desc='Epoch'):
ite = 0
train_loss_all = 0
for dataindex in range(len(self.trainloader_list)):
for data in self.trainloader_list[dataindex]:
self.optimizer.zero_grad()
logits, loss = self.model(data[0], data[1])
loss.backward()
self.optimizer.step()
train_loss_all += loss.item()
ite += 1
if self.lr_scheduler is not None:
self.lr_scheduler.step()
if self.test_set_list is not None:
eval_res_list = self.evaluate()
eval_res = np.mean(eval_res_list)
print('epoch: {}, test {}: {:.6f}'.format(epoch, self.args['eval_metric_name'], eval_res))
self.early_stopping(-eval_res, self.model)
if self.early_stopping.early_stop:
print('early stopped')
break
print('epoch: {}, train loss: {:.4f}, lr: {:.6f}, spent: {:.1f} secs'.format(epoch, train_loss_all, self.optimizer.param_groups[0]['lr'], time.time()-start_time))
if os.path.exists(self.output_dir):
if self.test_set_list is not None:
# load checkpoints
logger.info(f'load best at last from {self.output_dir}')
state_dict = torch.load(os.path.join(self.output_dir, constants.WEIGHTS_NAME), map_location='cpu')
self.model.load_state_dict(state_dict)
self.save_model(self.output_dir)
logger.info('training complete, cost {:.1f} secs.'.format(time.time()-start_time))
def evaluate(self):
# evaluate in each epoch
self.model.eval()
eval_res_list = []
for dataindex in range(len(self.testloader_list)):
y_test, pred_list, loss_list = [], [], []
for data in self.testloader_list[dataindex]:
if data[1] is not None:
label = data[1]
if isinstance(label, pd.Series):
label = label.values
y_test.append(label)
with torch.no_grad():
logits, loss = self.model(data[0], data[1])
if loss is not None:
loss_list.append(loss.item())
if logits is not None:
if logits.shape[-1] == 1: # binary classification
pred_list.append(logits.sigmoid().detach().cpu().numpy())
else: # multi-class classification
pred_list.append(torch.softmax(logits,-1).detach().cpu().numpy())
if len(pred_list)>0:
pred_all = np.concatenate(pred_list, 0)
if logits.shape[-1] == 1:
pred_all = pred_all.flatten()
if self.args['eval_metric_name'] == 'val_loss':
eval_res = np.mean(loss_list)
else:
y_test = np.concatenate(y_test, 0)
eval_res = self.args['eval_metric'](y_test, pred_all)
eval_res_list.append(eval_res)
return eval_res_list
def train_no_dataloader(self,
resume_from_checkpoint = None,
):
resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint
args = self.args
self.create_optimizer()
if args['warmup_ratio'] is not None or args['warmup_steps'] is not None:
print('set warmup training.')
self.create_scheduler(args['num_training_steps'], self.optimizer)
for epoch in range(args['num_epoch']):
ite = 0
# go through all train sets
for train_set in self.train_set_list:
x_train, y_train = train_set
train_loss_all = 0
for i in range(0, len(x_train), args['batch_size']):
self.model.train()
if self.balance_sample:
bs_x_train_pos = x_train.loc[y_train==1].sample(int(args['batch_size']/2))
bs_y_train_pos = y_train.loc[bs_x_train_pos.index]
bs_x_train_neg = x_train.loc[y_train==0].sample(int(args['batch_size']/2))
bs_y_train_neg = y_train.loc[bs_x_train_neg.index]
bs_x_train = pd.concat([bs_x_train_pos, bs_x_train_neg], axis=0)
bs_y_train = pd.concat([bs_y_train_pos, bs_y_train_neg], axis=0)
else:
bs_x_train = x_train.iloc[i:i+args['batch_size']]
bs_y_train = y_train.loc[bs_x_train.index]
self.optimizer.zero_grad()
logits, loss = self.model(bs_x_train, bs_y_train)
loss.backward()
self.optimizer.step()
train_loss_all += loss.item()
ite += 1
if self.lr_scheduler is not None:
self.lr_scheduler.step()
if self.test_set is not None:
# evaluate in each epoch
self.model.eval()
x_test, y_test = self.test_set
pred_all = predict(self.model, x_test, self.args['eval_batch_size'])
eval_res = self.args['eval_metric'](y_test, pred_all)
print('epoch: {}, test {}: {}'.format(epoch, self.args['eval_metric_name'], eval_res))
self.early_stopping(-eval_res, self.model)
if self.early_stopping.early_stop:
print('early stopped')
break
print('epoch: {}, train loss: {}, lr: {:.6f}'.format(epoch, train_loss_all, self.optimizer.param_groups[0]['lr']))
if os.path.exists(self.output_dir):
if self.test_set is not None:
# load checkpoints
print('load best at last from', self.output_dir)
state_dict = torch.load(os.path.join(self.output_dir, constants.WEIGHTS_NAME), map_location='cpu')
self.model.load_state_dict(state_dict)
self.save_model(self.output_dir)
def save_model(self, output_dir=None):
if output_dir is None:
print('no path assigned for save mode, default saved to ./ckpt/model.pt !')
output_dir = self.output_dir
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
logger.info(f'saving model checkpoint to {output_dir}')
self.model.save(output_dir)
self.collate_fn.save(output_dir)
if self.optimizer is not None:
torch.save(self.optimizer.state_dict(), os.path.join(output_dir, constants.OPTIMIZER_NAME))
if self.lr_scheduler is not None:
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, constants.SCHEDULER_NAME))
if self.args is not None:
train_args = {}
for k,v in self.args.items():
if isinstance(v, int) or isinstance(v, str) or isinstance(v, float):
train_args[k] = v
with open(os.path.join(output_dir, constants.TRAINING_ARGS_NAME), 'w', encoding='utf-8') as f:
f.write(json.dumps(train_args))
def create_optimizer(self):
if self.optimizer is None:
decay_parameters = get_parameter_names(self.model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if n in decay_parameters],
"weight_decay": self.args['weight_decay'],
},
{
"params": [p for n, p in self.model.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
]
self.optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=self.args['lr'])
def create_scheduler(self, num_training_steps, optimizer):
self.lr_scheduler = get_scheduler(
'cosine',
optimizer = optimizer,
num_warmup_steps=self.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
return self.lr_scheduler
def get_num_train_steps(self, train_set_list, num_epoch, batch_size):
total_step = 0
for trainset in train_set_list:
x_train, _ = trainset
total_step += np.ceil(len(x_train) / batch_size)
total_step *= num_epoch
return total_step
def get_warmup_steps(self, num_training_steps):
"""
Get number of steps used for a linear warmup.
"""
warmup_steps = (
self.args['warmup_steps'] if self.args['warmup_steps'] is not None else math.ceil(num_training_steps * self.args['warmup_ratio'])
)
return warmup_steps
def _build_dataloader(self, trainset, batch_size, collator, num_workers=8, shuffle=True):
trainloader = DataLoader(
TrainDataset(trainset),
collate_fn=collator,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
)
return trainloader