-
Notifications
You must be signed in to change notification settings - Fork 5
/
plot_fits_with_bpt.py
149 lines (132 loc) · 6.61 KB
/
plot_fits_with_bpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from gz3d_fits import gz3d_fits
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.colors import to_rgb
import marvin.utils.dap.bpt as bpt
import mpl_style
import plot_fits_files
import numpy as np
from plot_by_r import plot_alpha_scatter
plt.style.use(mpl_style.style1)
def plot_bpt_boundry(axs):
# Plots the classification boundary lines
xx_sf_nii = np.linspace(-1.281, 0.045, int(1e4))
xx_sf_sii = np.linspace(-2, 0.315, int(1e4))
xx_sf_oi = np.linspace(-2.5, -0.7, int(1e4))
xx_comp_nii = np.linspace(-2, 0.4, int(1e4))
xx_agn_sii = np.array([-0.308, 1.0])
xx_agn_oi = np.array([-1.12, 0.5])
# xlims = [ax.get_xlim() for ax in axs]
# ylims = [ax.get_ylim() for ax in axs]
xlims = [(-2, 0.5), (-1.5, 0.5), (-2.5, 0.0)]
ylims = [(-1.5, 1.3), (-1.5, 1.3), (-1.5, 1.3)]
xlabels = [r'log([NII]/H$\alpha$)', r'log([SII]/H$\alpha$)', r'log([OI]/H$\alpha$)']
axs[0].plot(xx_sf_nii, bpt.kewley_sf_nii(xx_sf_nii), 'k--', zorder=90)
axs[0].plot(xx_comp_nii, bpt.kewley_comp_nii(xx_comp_nii), 'k-', zorder=90)
axs[1].plot(xx_sf_sii, bpt.kewley_sf_sii(xx_sf_sii), 'k-', zorder=90)
axs[1].plot(xx_agn_sii, bpt.kewley_agn_sii(xx_agn_sii), 'k-', zorder=80)
axs[2].plot(xx_sf_oi, bpt.kewley_sf_oi(xx_sf_oi), 'k-', zorder=90)
axs[2].plot(xx_agn_oi, bpt.kewley_agn_oi(xx_agn_oi), 'k-', zorder=80)
for ax, xlim, ylim, xlabel in zip(axs, xlims, ylims, xlabels):
ax.set_ylabel(r'log([OIII]/H$\beta$)')
ax.set_xlabel(xlabel)
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
axs[0].legend(loc=3)
def plot_bpt_alpha(gz3d, ax, bpt_kind, **kwargs):
y = gz3d.log_oiii_hb
x = getattr(gz3d, bpt_kind)
mdx = ~(y.mask | x.mask)
s = kwargs.pop('s', 8)
odx = mdx & (gz3d.other_mask_spaxel > 0)
ax.scatter(x[odx], y[odx], c='#c5c5c5', edgecolor='#c5c5c5', s=s, label='Other', **kwargs)
plot_alpha_scatter(x, y, gz3d.spiral_mask_spaxel, 'C0', ax, s=s, sf_mask=mdx, snr=None, value=False, **kwargs)
plot_alpha_scatter(x, y, gz3d.bar_mask_spaxel, 'C1', ax, s=s, sf_mask=mdx, snr=None, value=False, **kwargs)
plot_alpha_scatter(x, y, gz3d.star_mask_spaxel, 'C3', ax, s=s, sf_mask=mdx, snr=None, value=False, **kwargs)
plot_alpha_scatter(x, y, gz3d.center_mask_spaxel, 'C2', ax, s=s, sf_mask=mdx, snr=None, value=False, **kwargs)
def plot_bpt(axs, gz3d, **kwargs):
for idx, bpt_name in enumerate(['log_nii_ha', 'log_sii_ha', 'log_oi_ha']):
plot_bpt_alpha(gz3d, axs[idx], bpt_name, **kwargs)
def screen_color(c1, c2):
c1 = np.array(c1)
c2 = np.array(c2)
return 1 - ((1 - c1) * (1 - c2))
def plot_bpt_dis(axs, gz3d, mask_name, color='C0', **kwargs):
if gz3d.cube != 'no_data':
for idx, bpt_name in enumerate(['log_nii_ha', 'log_sii_ha', 'log_oi_ha']):
x, y, dis = gz3d.bpt_in_mask(mask_name, bpt_name)
if len(dis) > 0:
rgb = to_rgb(color)
colors = np.array([screen_color(rgb, d) for d in dis])
axs[idx].scatter(x, y, color=colors, edgecolor=colors, **kwargs)
def plot_spectra(ax, gz3d, spectrum_name, **kwargs):
spectrum = getattr(gz3d, 'mean_{0}'.format(spectrum_name))
spectrum_inv = getattr(gz3d, 'mean_not_{0}'.format(spectrum_name))
if spectrum is not None:
spectrum_dif = spectrum - spectrum_inv
ax.plot(spectrum_dif.wavelength, spectrum_dif.flux, **kwargs)
def make_spectra_ax(ax):
ax.set_xlabel(r'Wavelength $[\rm\AA]$')
ax.set_ylabel(r'$\Delta$Flux $[\rm 10^{-17}\,erg\,s^{-1}\,cm^{-2}\,\AA^{-1}]$')
# ax.set_ylim([0, None])
ax.set_title('Difference spectra')
ax.legend(loc=1)
if __name__ == '__main__':
from astropy.table import Table
import os
import progressbar as pb
filepath = '/Volumes/Work/GZ3D/MPL5_fits'
filenames = Table.read('bar_or_spiral.txt', format='ascii.csv')
output_folder = '/Volumes/Work/GZ3D/MPL5_plots_bpt'
widgets = ['Plot: ', pb.Percentage(), ' ', pb.Bar(marker='0', left='[', right=']'), ' ', pb.ETA()]
pbar = pb.ProgressBar(widgets=widgets, maxval=len(filenames))
pbar.start()
for fdx, filename in enumerate(filenames['filename']):
output_name = filename.split('.')[0]
# skip existing files
if os.path.isfile('{0}/{1}.png'.format(output_folder, output_name)):
pbar.update(fdx + 1)
continue
gz3d = gz3d_fits('{0}/{1}'.format(filepath, filename))
gz3d.get_bpt()
gz3d.get_mean_spectra(inv=True)
fig_width = 21.9
fig_height = 13.5
gs = gridspec.GridSpec(3, 4)
gs.update(left=0.05, right=0.94, bottom=0.05, top=0.94, wspace=0.5, hspace=0.3)
fig = plt.figure(fdx, figsize=(fig_width, fig_height))
# plot original image
ax_00 = plot_fits_files.plot_original(gz3d, gs[0, 0])
ax_00.set_title('{0}'.format(gz3d.metadata['MANGAID'][0]))
# plot center image
ax_01 = plot_fits_files.plot_ellipse(gz3d, 'center', gs[0, 1])
ax_01.set_title('Center(s) \n {0} Classifications'.format(gz3d.num_center_star_classifications))
# plot star image
ax_02 = plot_fits_files.plot_ellipse(gz3d, 'star', gs[0, 2])
ax_02.set_title('Star(s) \n {0} Classifications'.format(gz3d.num_center_star_classifications))
# plot spiral image
ax_10 = plot_fits_files.plot_mask(gz3d, 'spiral', gs[1, 0])
ax_10.set_title('Spiral arms \n {0} Classifications'.format(gz3d.num_spiral_classifications))
# plot bar image
ax_11 = plot_fits_files.plot_mask(gz3d, 'bar', gs[1, 1])
ax_11.set_title('Bar \n {0} Classifications'.format(gz3d.num_bar_classifications))
# plot spectra
ax_20 = plt.subplot(gs[2, :-1])
plot_spectra(ax_20, gz3d, 'center', label=r'$\Delta$Center', color='C2', alpha=0.8)
plot_spectra(ax_20, gz3d, 'bar', label=r'$\Delta$Bar', color='C1', alpha=0.8)
plot_spectra(ax_20, gz3d, 'spiral', label=r'$\Delta$Spiral', color='C0', alpha=0.8)
make_spectra_ax(ax_20)
# plot bpt
axs = [plt.subplot(gs[0, 3]), plt.subplot(gs[1, 3]), plt.subplot(gs[2, 3])]
plot_bpt(axs, gz3d, 'other_mask_spaxel', color='C7', label='Other', s=3)
plot_bpt(axs, gz3d, 'spiral_mask_spaxel', color='C0', label='Spiral', s=3)
plot_bpt(axs, gz3d, 'bar_mask_spaxel', color='C1', label='Bar', s=3)
plot_bpt(axs, gz3d, 'center_mask_spaxel', color='C2', label='Center', s=3)
plot_bpt_boundry(axs)
# save plot
fig.savefig('{0}/{1}.png'.format(output_folder, output_name))
# close files and figure
gz3d.close()
plt.close(fig)
pbar.update(fdx + 1)
pbar.finish()