-
Notifications
You must be signed in to change notification settings - Fork 1
/
client_data_allocation.py
85 lines (66 loc) · 3.21 KB
/
client_data_allocation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import sys
import pandas as pd
import numpy as np
import random
import os
import json
import pdb
num_clients = int(sys.argv[1])
diff_quantity = int(sys.argv[2])
np.random.seed(42)
random.seed(42)
# Divide the entire dataset into a training set and a test set.
df = pd.read_json("new-databricks-dolly-15k.json", orient='records')
sorted_df = df.sort_values(by=['category'])
grouped = sorted_df.groupby('category')
sampled_df = grouped.apply(lambda x: x.sample(n=10))
sampled_df = sampled_df.reset_index(level=0, drop=True)
remaining_df = sorted_df.drop(index=sampled_df.index)
sampled_df = sampled_df.reset_index().drop('index', axis=1)
remaining_df = remaining_df.reset_index().drop('index', axis=1)
data_path = os.path.join("data", str(num_clients))
os.makedirs(data_path,exist_ok=True)
remaining_df_dic = remaining_df.to_dict(orient='records')
with open(os.path.join(data_path, "global_training.json"), 'w') as outfile:
json.dump(remaining_df_dic, outfile)
sampled_df_dic = sampled_df.to_dict(orient='records')
with open(os.path.join(data_path, "global_test.json"), 'w') as outfile:
json.dump(sampled_df_dic, outfile)
# Partition the global training data into smaller subsets for each client's local training dataset
if diff_quantity:
min_size = 0
min_require_size = 40
alpha = 0.5
N = len(remaining_df)
net_dataidx_map = {}
category_uniques = remaining_df['category'].unique().tolist()
while min_size < min_require_size:
idx_partition = [[] for _ in range(num_clients)]
for k in range(len(category_uniques)):
category_rows_k = remaining_df.loc[remaining_df['category'] == category_uniques[k]]
category_rows_k_index = category_rows_k.index.values
np.random.shuffle(category_rows_k_index)
proportions = np.random.dirichlet(np.repeat(alpha, num_clients))
proportions = np.array([p * (len(idx_j) < N / num_clients) for p, idx_j in zip(proportions, idx_partition)])
proportions = proportions / proportions.sum()
proportions = (np.cumsum(proportions) * len(category_rows_k_index)).astype(int)[:-1]
idx_partition = [idx_j + idx.tolist() for idx_j, idx in
zip(idx_partition, np.split(category_rows_k_index, proportions))]
min_size = min([len(idx_j) for idx_j in idx_partition])
print(min_size)
else:
num_shards_per_clients = 2
remaining_df_index = remaining_df.index.values
shards = np.array_split(remaining_df_index, int(num_shards_per_clients * num_clients))
random.shuffle(shards)
shards = [shards[i:i + num_shards_per_clients] for i in range(0, len(shards), num_shards_per_clients)]
idx_partition = [np.concatenate(shards[n]).tolist() for n in range(num_clients)]
for client_id, idx in enumerate(idx_partition):
print(
"\n Generating the local training dataset of Client_{}".format(client_id)
)
sub_remaining_df = remaining_df.loc[idx]
sub_remaining_df = sub_remaining_df.reset_index().drop('index', axis=1)
sub_remaining_df_dic = sub_remaining_df.to_dict(orient='records')
with open(os.path.join(data_path, "local_training_{}.json".format(client_id)), 'w') as outfile:
json.dump(sub_remaining_df_dic, outfile)