forked from soleilssss/FFCNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
149 lines (119 loc) · 5.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn as nn
from complexLayers import *
from complexFunctions import *
from shift import *
from complexUtils import Sequential_complex
class BasicBlock(nn.Module):
"""Basic Block for resnet 18 and resnet 34
"""
#BasicBlock and BottleNeck block
#have different output size
#we use class attribute expansion
#to distinct
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
#residual function
self.residual_function = Sequential_complex(
ComplexConv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
ComplexBatchNorm2d(out_channels),
ComplexReLU(inplace=True), #inplace = true
ComplexConv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
ComplexBatchNorm2d(out_channels * BasicBlock.expansion)
)
#shortcut
self.shortcut = Sequential_complex()
#the shortcut output dimension is not the same with residual function
#use 1*1 convolution to match the dimension
if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
self.shortcut = Sequential_complex(
ComplexConv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
ComplexBatchNorm2d(out_channels * BasicBlock.expansion)
)
def forward(self, x1, x2):
x3, x4 = self.residual_function(x1, x2)
x1, x2 = complex_relu(x3, x4, inplace=True)
return x1, x2
class BottleNeck(nn.Module):
"""Residual block for resnet over 50 layers
"""
expansion = 4
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.residual_function = Sequential_complex(
ComplexConv2d(in_channels, out_channels, kernel_size=1, bias=False),
ComplexBatchNorm2d(out_channels),
ComplexReLU(inplace=True),
ComplexConv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
ComplexBatchNorm2d(out_channels),
ComplexReLU(inplace=True),
ComplexConv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
ComplexBatchNorm2d(out_channels * BottleNeck.expansion),
)
self.shortcut = Sequential_complex()
if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
self.shortcut = Sequential_complex(
ComplexConv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
ComplexBatchNorm2d(out_channels * BottleNeck.expansion)
)
def forward(self, x1, x2):
return complex_relu(self.residual_function(x1, x2)+ self.shortcut(x1, x2))
class ResNet(nn.Module):
def __init__(self, block, num_block, num_classes=2, inputchannel=1):
super().__init__()
self.in_channels = 64
self.conv1 = ComplexConv2d(in_channels=inputchannel, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = ComplexBatchNorm2d(num_features=64)
self.relu = ComplexReLU(inplace=True)
self.maxpool = ComplexMaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
self.avg_pool = Complex_AdaptiveAvgPool2d((1, 1))
self.fc = ComplexLinear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return Sequential_complex(*layers)
def forward(self, x, target = None):
xr = x[:,[0,1,2],:,:]
xi = x[:,[3,4,5],:,:]
xr, xi = self.conv1(xr, xi)
xr, xi = self.bn1(xr, xi)
xr, xi = self.relu(xr, xi)
xr, xi = self.maxpool(xr, xi)
xr, xi = self.conv2_x(xr, xi)
xr, xi = self.conv3_x(xr, xi)
xr, xi = self.conv4_x(xr, xi)
xr, xi = self.conv5_x(xr, xi)
xr, xi = self.avg_pool(xr, xi)
xr = xr.view(xr.size(0), -1)
xi = xi.view(xi.size(0), -1)
xr, xi = self.fc(xr, xi)
x = torch.sqrt(torch.pow(xr,2)+torch.pow(xi,2))
return x
def resnet18(num_classes=4, inputchannel=3):
""" return a ResNet 18 object
"""
return ResNet(BasicBlock, [2, 2, 2, 2],num_classes=4, inputchannel=3)
def resnet34(num_classes=4, inputchannel=3):
""" return a ResNet 34 object
"""
return ResNet(BasicBlock, [3, 4, 6, 3],num_classes=4, inputchannel=3)
def resnet50(num_classes=4, inputchannel=3):
""" return a ResNet 50 object
"""
return ResNet(BottleNeck, [3, 4, 6, 3],num_classes=4, inputchannel=3)
def resnet101(num_classes=4, inputchannel=3):
""" return a ResNet 101 object
"""
return ResNet(BottleNeck, [3, 4, 23, 3],num_classes=4, inputchannel=3)
def resnet152(num_classes=4, inputchannel=3):
""" return a ResNet 152 object
"""
return ResNet(BottleNeck, [3, 8, 36, 3],num_classes=4, inputchannel=3)