-
Notifications
You must be signed in to change notification settings - Fork 1
/
mmd.py
186 lines (134 loc) · 5.88 KB
/
mmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) 2018-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from utils import coord_median, set_seed
class MMD(nn.Module):
"""Implementation of MMD GAN"""
def __init__(self, sigma, device):
super().__init__()
self.sigma = sigma
self.device = device
def forward(self, X, Y):
"""
X: a tensor of size (n, p)
Y: a tensor of size (m, p)
"""
n = X.size(0)
m = Y.size(0)
return self.gaussian_kernel(X, X, denominator=self.sigma ** 2, diagonal=True) / n / (n - 1) \
+ self.gaussian_kernel(Y, Y, denominator=self.sigma ** 2, diagonal=True) / m / (m - 1) \
- 2 * self.gaussian_kernel(X, Y, denominator=self.sigma ** 2, diagonal=False) / n / m
@staticmethod
def gaussian_kernel(X, Y, denominator, diagonal):
"""
Helper function to compute the gaussian_kernel to each entry of X
and sum them up
X: a tensor of size (n, p)
Y: a tensor of size (m, p)
denominator:
diagonal: whether subtract diagonal entries or not
"""
ret = (- torch.sum((X.unsqueeze(1) - Y.unsqueeze(0)).abs() ** 2, dim=-1)
/ 2 / denominator).exp().sum()
if diagonal:
ret -= (- torch.sum((X.unsqueeze(1) - Y.unsqueeze(0)).abs() ** 2, dim=-1).diag()
/ 2 / denominator).exp().sum()
return ret
def test_mmd(args, device):
mmd = MMD(lam=args.sigma,
device=device)
n = args.train_size
X = torch.randn((n, args.p))
Y = torch.randn((n, args.p)) + 1
X = X.to(device)
Y = Y.to(device)
with torch.no_grad():
loss = mmd(X, Y)
print('MMD loss = {:.4d}'.format(loss.item()))
if __name__ == '__main__':
device = "cuda"
from model import Generator
from data import NoiseGenerator, generate_contaminated_data
from torch.utils.data import TensorDataset
from str2bool import str2bool
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--num_epoch", type=int, default=1)
parser.add_argument("--p", type=int, default=2)
parser.add_argument("--eps", type=float, default=0.2)
parser.add_argument("--train_size", type=int, default=100)
parser.add_argument("--contamination", type=str, default="gauss_5")
parser.add_argument("--real_batch_size", type=int, default=100)
parser.add_argument("--fake_batch_size", type=int, default=100)
parser.add_argument("--g_sgd_lr", type=float, default=0.001)
parser.add_argument("--g_sgd_momentum", type=float, default=0.9)
parser.add_argument("--g_sgd_normalize", type=str2bool, default=0)
parser.add_argument("--sigma", type=float, default=0.1)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--debug", type=str2bool, default=0)
parser.add_argument("--test", type=str2bool, default=0)
parser.add_argument("--save_info_loc", type=str, default=None)
args = parser.parse_args()
print(args)
set_seed(args.seed)
if args.test:
test_mmd(args, device)
exit()
theta = torch.zeros(args.p).to(device)
data, theta = generate_contaminated_data(args.eps,
args.train_size,
theta=theta,
type_cont=args.contamination,
coord_median_as_origin=False)
data = data.to(device)
theta = theta.to(device)
data_loader = torch.utils.data.DataLoader(TensorDataset(data),
batch_size=args.real_batch_size,
shuffle=True,
num_workers=0)
noise_generator = NoiseGenerator().to(device)
'''
Do not use coordinate-wise median as initialization.
The global minimum of MMD GAN has mean square error very close to the coordinate-wise median,
thus we prefer the training starting from somewhere else in order to see the progress of training.
'''
generator = Generator(p=args.p,
# initializer=torch.ones(args.p),
initializer=1.5 * coord_median(data),
).to(device)
mmd = MMD(sigma=args.sigma,
device=device)
g_optim = torch.optim.SGD(generator.parameters(),
lr=args.g_sgd_lr,
momentum=args.g_sgd_momentum)
print('initial dist {:.4f}'.format(
torch.norm(generator.eta - theta).item()))
lst_eta = [generator.get_numpy_eta()]
for i in range(args.num_epoch):
total_loss = 0
for batch_index, real_data in enumerate(data_loader):
real_data = real_data[0].to(device)
fake_data = generator(
noise_generator((args.fake_batch_size, args.p)))
loss = mmd(real_data, fake_data)
g_optim.zero_grad()
loss.backward()
if args.g_sgd_normalize:
with torch.no_grad():
generator.eta.grad /= torch.norm(generator.eta.grad)
g_optim.step()
total_loss += loss.item()
lst_eta.append(generator.get_numpy_eta())
total_loss /= (batch_index + 1)
print('epoch {:3d}, dist {:.4f}, avg mmd {:.6f}'.format(i + 1,
torch.norm(generator.eta - theta).item(),
total_loss))
if args.debug:
print(generator.get_numpy_eta())
if args.save_info_loc is not None:
torch.save((theta.cpu().numpy(), lst_eta), args.save_info_loc)
print("saved")