forked from bojone/seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq2seq_bidecoder.py
447 lines (395 loc) · 18 KB
/
seq2seq_bidecoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#! -*- coding: utf-8 -*-
# seq2seq,双向解码机制的Keras实现
import numpy as np
import pymongo
from tqdm import tqdm
import os,json
import uniout
import tensorflow as tf
import keras
from keras.layers import *
from keras_layer_normalization import LayerNormalization
from keras.models import Model
from keras import backend as K
from keras.callbacks import Callback
from keras.optimizers import Adam
min_count = 32
maxlen = 400
batch_size = 64
epochs = 100
char_size = 128
z_dim = 128
db = pymongo.MongoClient().text.thucnews # 我的数据存在mongodb中
if os.path.exists('seq2seq_config.json'):
chars,id2char,char2id = json.load(open('seq2seq_config.json'))
id2char = {int(i):j for i,j in id2char.items()}
else:
chars = {}
for a in tqdm(db.find()):
for w in a['content']: # 纯文本,不用分词
chars[w] = chars.get(w,0) + 1
for w in a['title']: # 纯文本,不用分词
chars[w] = chars.get(w,0) + 1
chars = {i:j for i,j in chars.items() if j >= min_count}
# 0: mask
# 1: unk
# 2: start
# 3: end
id2char = {i+4:j for i,j in enumerate(chars)}
char2id = {j:i for i,j in id2char.items()}
json.dump([chars,id2char,char2id], open('seq2seq_config.json', 'w'))
def str2id(s, start_end=False):
# 文字转整数id
if start_end: # 补上<start>和<end>标记
ids = [char2id.get(c, 1) for c in s[:maxlen-2]]
ids = [2] + ids + [3]
else: # 普通转化
ids = [char2id.get(c, 1) for c in s[:maxlen]]
return ids
def id2str(ids):
# id转文字,找不到的用空字符代替
return ''.join([id2char.get(i, '') for i in ids])
def padding(x):
# padding至batch内的最大长度
ml = max([len(i) for i in x])
return [i + [0] * (ml-len(i)) for i in x]
def data_generator():
# 数据生成器
X, Y1, Y2 = [], [], []
while True:
for a in db.find():
X.append(str2id(a['content']))
Y1.append(str2id(a['title'], start_end=True))
Y2.append(str2id(a['title'], start_end=True)[::-1])
if len(X) == batch_size:
X = np.array(padding(X))
Y1 = np.array(padding(Y1))
Y2 = np.array(padding(Y2))
yield [X, Y1, Y2], None
X, Y1, Y2 = [], [], []
class OurLayer(Layer):
"""定义新的Layer,增加reuse方法,允许在定义Layer时调用现成的层
"""
def reuse(self, layer, *args, **kwargs):
if not layer.built:
if len(args) > 0:
inputs = args[0]
else:
inputs = kwargs['inputs']
if isinstance(inputs, list):
input_shape = [K.int_shape(x) for x in inputs]
else:
input_shape = K.int_shape(inputs)
layer.build(input_shape)
outputs = layer.call(*args, **kwargs)
if not keras.__version__.startswith('2.3.'):
for w in layer.trainable_weights:
if w not in self._trainable_weights:
self._trainable_weights.append(w)
for w in layer.non_trainable_weights:
if w not in self._non_trainable_weights:
self._non_trainable_weights.append(w)
for u in layer.updates:
if not hasattr(self, '_updates'):
self._updates = []
if u not in self._updates:
self._updates.append(u)
return outputs
def to_one_hot(x):
"""输出一个词表大小的向量,来标记该词是否在文章出现过
"""
x, x_mask = x
x = K.cast(x, 'int32')
x = K.one_hot(x, len(chars)+4)
x = K.sum(x_mask * x, 1, keepdims=True)
x = K.cast(K.greater(x, 0.5), 'float32')
return x
class ScaleShift(Layer):
"""缩放平移变换层(Scale and shift)
"""
def __init__(self, **kwargs):
super(ScaleShift, self).__init__(**kwargs)
def build(self, input_shape):
kernel_shape = (1,) * (len(input_shape)-1) + (input_shape[-1],)
self.log_scale = self.add_weight(name='log_scale',
shape=kernel_shape,
initializer='zeros')
self.shift = self.add_weight(name='shift',
shape=kernel_shape,
initializer='zeros')
def call(self, inputs):
x_outs = K.exp(self.log_scale) * inputs + self.shift
return x_outs
class OurBidirectional(OurLayer):
"""自己封装双向RNN,允许传入mask,保证对齐
"""
def __init__(self, layer, **args):
super(OurBidirectional, self).__init__(**args)
self.forward_layer = layer.__class__.from_config(layer.get_config())
self.backward_layer = layer.__class__.from_config(layer.get_config())
self.forward_layer.name = 'forward_' + self.forward_layer.name
self.backward_layer.name = 'backward_' + self.backward_layer.name
def reverse_sequence(self, x, mask):
"""这里的mask.shape是[batch_size, seq_len, 1]
"""
seq_len = K.round(K.sum(mask, 1)[:, 0])
seq_len = K.cast(seq_len, 'int32')
return tf.reverse_sequence(x, seq_len, seq_dim=1)
def call(self, inputs):
x, mask = inputs
x_forward = self.reuse(self.forward_layer, x)
x_backward = self.reverse_sequence(x, mask)
x_backward = self.reuse(self.backward_layer, x_backward)
x_backward = self.reverse_sequence(x_backward, mask)
x = K.concatenate([x_forward, x_backward], -1)
if K.ndim(x) == 3:
return x * mask
else:
return x
def compute_output_shape(self, input_shape):
return input_shape[0][:-1] + (self.forward_layer.units * 2,)
def seq_avgpool(x):
"""seq是[None, seq_len, s_size]的格式,
mask是[None, seq_len, 1]的格式,先除去mask部分,
然后再做avgpooling。
"""
seq, mask = x
return K.sum(seq * mask, 1) / (K.sum(mask, 1) + 1e-6)
def seq_maxpool(x):
"""seq是[None, seq_len, s_size]的格式,
mask是[None, seq_len, 1]的格式,先除去mask部分,
然后再做maxpooling。
"""
seq, mask = x
seq -= (1 - mask) * 1e10
return K.max(seq, 1)
class SelfModulatedLayerNormalization(OurLayer):
"""模仿Self-Modulated Batch Normalization,
只不过降Batch Normalization改为Layer Normalization
"""
def __init__(self, num_hidden, **kwargs):
super(SelfModulatedLayerNormalization, self).__init__(**kwargs)
self.num_hidden = num_hidden
def build(self, input_shape):
super(SelfModulatedLayerNormalization, self).build(input_shape)
output_dim = input_shape[0][-1]
self.layernorm = LayerNormalization(center=False, scale=False)
self.beta_dense_1 = Dense(self.num_hidden, activation='relu')
self.beta_dense_2 = Dense(output_dim)
self.gamma_dense_1 = Dense(self.num_hidden, activation='relu')
self.gamma_dense_2 = Dense(output_dim)
def call(self, inputs):
inputs, cond = inputs
inputs = self.reuse(self.layernorm, inputs)
beta = self.reuse(self.beta_dense_1, cond)
beta = self.reuse(self.beta_dense_2, beta)
gamma = self.reuse(self.gamma_dense_1, cond)
gamma = self.reuse(self.gamma_dense_2, gamma)
for _ in range(K.ndim(inputs) - K.ndim(cond)):
beta = K.expand_dims(beta, 1)
gamma = K.expand_dims(gamma, 1)
return inputs * (gamma + 1) + beta
def compute_output_shape(self, input_shape):
return input_shape[0]
class Attention(OurLayer):
"""多头注意力机制
"""
def __init__(self, heads, size_per_head, key_size=None,
mask_right=False, **kwargs):
super(Attention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
self.mask_right = mask_right
def build(self, input_shape):
super(Attention, self).build(input_shape)
self.q_dense = Dense(self.key_size * self.heads, use_bias=False)
self.k_dense = Dense(self.key_size * self.heads, use_bias=False)
self.v_dense = Dense(self.out_dim, use_bias=False)
def mask(self, x, mask, mode='mul'):
if mask is None:
return x
else:
for _ in range(K.ndim(x) - K.ndim(mask)):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 'mul':
return x * mask
else:
return x - (1 - mask) * 1e10
def call(self, inputs):
q, k, v = inputs[:3]
v_mask, q_mask = None, None
if len(inputs) > 3:
v_mask = inputs[3]
if len(inputs) > 4:
q_mask = inputs[4]
# 线性变换
qw = self.reuse(self.q_dense, q)
kw = self.reuse(self.k_dense, k)
vw = self.reuse(self.v_dense, v)
# 形状变换
qw = K.reshape(qw, (-1, K.shape(qw)[1], self.heads, self.key_size))
kw = K.reshape(kw, (-1, K.shape(kw)[1], self.heads, self.key_size))
vw = K.reshape(vw, (-1, K.shape(vw)[1], self.heads, self.size_per_head))
# 维度置换
qw = K.permute_dimensions(qw, (0, 2, 1, 3))
kw = K.permute_dimensions(kw, (0, 2, 1, 3))
vw = K.permute_dimensions(vw, (0, 2, 1, 3))
# Attention
a = tf.einsum('ijkl,ijml->ijkm', qw, kw) / self.key_size**0.5
a = K.permute_dimensions(a, (0, 3, 2, 1))
a = self.mask(a, v_mask, 'add')
a = K.permute_dimensions(a, (0, 3, 2, 1))
if self.mask_right:
ones = K.ones_like(a[:1, :1])
mask = (ones - K.tf.matrix_band_part(ones, -1, 0)) * 1e10
a = a - mask
a = K.softmax(a)
# 完成输出
o = tf.einsum('ijkl,ijlm->ijkm', a, vw)
o = K.permute_dimensions(o, (0, 2, 1, 3))
o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim))
o = self.mask(o, q_mask, 'mul')
return o
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
# 搭建seq2seq模型
x_in = Input(shape=(None,))
yl_in = Input(shape=(None,))
yr_in = Input(shape=(None,))
x, yl, yr = x_in, yl_in, yr_in
x_mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(x)
y_mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(yl)
x_one_hot = Lambda(to_one_hot)([x, x_mask])
x_prior = ScaleShift()(x_one_hot) # 学习输出的先验分布(标题的字词很可能在文章出现过)
embedding = Embedding(len(chars)+4, char_size)
x = embedding(x)
# encoder,双层双向LSTM
x = LayerNormalization()(x)
x = OurBidirectional(CuDNNLSTM(z_dim // 2, return_sequences=True))([x, x_mask])
x = LayerNormalization()(x)
x = OurBidirectional(CuDNNLSTM(z_dim // 2, return_sequences=True))([x, x_mask])
x_max = Lambda(seq_maxpool)([x, x_mask])
# 正向decoder,单向LSTM
y = embedding(yl)
y = SelfModulatedLayerNormalization(z_dim // 4)([y, x_max])
y = CuDNNLSTM(z_dim, return_sequences=True)(y)
y = SelfModulatedLayerNormalization(z_dim // 4)([y, x_max])
y = CuDNNLSTM(z_dim, return_sequences=True)(y)
yl = SelfModulatedLayerNormalization(z_dim // 4)([y, x_max])
# 逆向decoder,单向LSTM
y = embedding(yr)
y = SelfModulatedLayerNormalization(z_dim // 4)([y, x_max])
y = CuDNNLSTM(z_dim, return_sequences=True)(y)
y = SelfModulatedLayerNormalization(z_dim // 4)([y, x_max])
y = CuDNNLSTM(z_dim, return_sequences=True)(y)
yr = SelfModulatedLayerNormalization(z_dim // 4)([y, x_max])
# 对齐attention + 检索attention
yl_ = Attention(8, 16, mask_right=True)([yl, yr, yr])
ylx = Attention(8, 16)([yl, x, x, x_mask])
yl = Concatenate()([yl, yl_, ylx])
# 对齐attention + 检索attention
yr_ = Attention(8, 16, mask_right=True)([yr, yl, yl])
yrx = Attention(8, 16)([yr, x, x, x_mask])
yr = Concatenate()([yr, yr_, yrx])
# 最后的输出分类(左右共享权重)
classifier = Dense(len(chars)+4)
yl = Dense(char_size)(yl)
yl = LeakyReLU(0.2)(yl)
yl = classifier(yl)
yl = Lambda(lambda x: (x[0]+x[1])/2)([yl, x_prior]) # 与先验结果平均
yl = Activation('softmax')(yl)
yr = Dense(char_size)(yr)
yr = LeakyReLU(0.2)(yr)
yr = classifier(yr)
yr = Lambda(lambda x: (x[0]+x[1])/2)([yr, x_prior]) # 与先验结果平均
yr = Activation('softmax')(yr)
# 交叉熵作为loss,但mask掉padding部分
cross_entropy_1 = K.sparse_categorical_crossentropy(yl_in[:, 1:], yl[:, :-1])
cross_entropy_1 = K.sum(cross_entropy_1 * y_mask[:, 1:, 0]) / K.sum(y_mask[:, 1:, 0])
cross_entropy_2 = K.sparse_categorical_crossentropy(yr_in[:, 1:], yr[:, :-1])
cross_entropy_2 = K.sum(cross_entropy_2 * y_mask[:, 1:, 0]) / K.sum(y_mask[:, 1:, 0])
cross_entropy = (cross_entropy_1 + cross_entropy_2) / 2
model = Model([x_in, yl_in, yr_in], [yl, yr])
model.add_loss(cross_entropy)
model.compile(optimizer=Adam(1e-3))
def gen_sent(s, topk=3, maxlen=64):
"""双向beam search解码
每次只保留topk个最优候选结果;如果topk=1,那么就是贪心搜索
"""
xid = np.array([str2id(s)] * topk**2) # 输入转id
yl_id = np.array([[2]] * topk) # L2R解码均以<start>开头,这里<start>的id为2
yr_id = np.array([[3]] * topk) # R2L解码均以<end>开头,这里<end>的id为3
l_scores, r_scores = [0] * topk, [0] * topk # 候选答案分数
l_order, r_order = [], [] # 组合顺序
for i in range(topk):
for j in range(topk):
l_order.append(i)
r_order.append(j)
for i in range(maxlen): # 强制要求输出不超过maxlen字
l_proba, r_proba = model.predict([xid, yl_id[l_order], yr_id[r_order]]) # 计算左右解码概率
l_proba = l_proba[:, i, 3:] # 直接忽略<padding>、<unk>、<start>
r_proba = np.concatenate([r_proba[:, i, 2: 3], r_proba[:, i, 4:]], 1) # 直接忽略<padding>、<unk>、<end>
l_proba = l_proba.reshape((topk, topk, -1)).mean(1) # 对所有候选R2L序列求平均,得到当前L2R方向的预测结果
r_proba = r_proba.reshape((topk, topk, -1)).mean(0) # 对所有候选L2R序列求平均,得到当前R2L方向的预测结果
l_log_proba = np.log(l_proba + 1e-6) # 取对数方便计算
r_log_proba = np.log(r_proba + 1e-6) # 取对数方便计算
l_arg_topk = l_log_proba.argsort(axis=1)[:, -topk:] # 每一项选出topk
r_arg_topk = r_log_proba.argsort(axis=1)[:, -topk:] # 每一项选出topk
_yl_id, _yr_id = [], [] # 暂存的候选目标序列
_l_scores, _r_scores = [], [] # 暂存的候选目标序列得分
if i == 0:
for j in range(topk):
_yl_id.append(list(yl_id[j]) + [l_arg_topk[0][j]+3])
_l_scores.append(l_log_proba[0][l_arg_topk[0][j]])
_yr_id.append(list(yr_id[j]) + [r_arg_topk[0][j]+3])
_r_scores.append(r_log_proba[0][r_arg_topk[0][j]])
else:
for j in range(topk):
for k in range(topk): # 遍历topk*topk的组合
_yl_id.append(list(yl_id[j]) + [l_arg_topk[j][k]+3])
_l_scores.append(l_scores[j] + l_log_proba[j][l_arg_topk[j][k]])
_yr_id.append(list(yr_id[j]) + [r_arg_topk[j][k]+3])
_r_scores.append(r_scores[j] + r_log_proba[j][r_arg_topk[j][k]])
_l_arg_topk = np.argsort(_l_scores)[-topk:] # 从中选出新的topk
_r_arg_topk = np.argsort(_r_scores)[-topk:] # 从中选出新的topk
_yl_id = [_yl_id[k] for k in _l_arg_topk]
_l_scores = [_l_scores[k] for k in _l_arg_topk]
_yr_id = [_yr_id[k] for k in _r_arg_topk]
_r_scores = [_r_scores[k] for k in _r_arg_topk]
yl_id = np.array(_yl_id)
yr_id = np.array(_yr_id)
l_scores = np.array(_l_scores)
r_scores = np.array(_r_scores)
l_best_one = l_scores.argmax()
r_best_one = r_scores.argmax()
if yl_id[l_best_one][-1] == 3 and l_scores[l_best_one] >= r_scores[r_best_one]:
return id2str(yl_id[l_best_one])
if yr_id[r_best_one][-1] == 3 and r_scores[r_best_one] >= l_scores[l_best_one]:
return id2str(yr_id[r_best_one][::-1)
# 如果maxlen字都找不到<end>,直接返回
l_best_one = l_scores.argmax()
r_best_one = r_scores.argmax()
if l_scores[l_best_one] >= r_scores[r_best_one]:
return id2str(yl_id[l_best_one])
else:
return id2str(yr_id[r_best_one][::-1])
s1 = u'夏天来临,皮肤在强烈紫外线的照射下,晒伤不可避免,因此,晒后及时修复显得尤为重要,否则可能会造成长期伤害。专家表示,选择晒后护肤品要慎重,芦荟凝胶是最安全,有效的一种选择,晒伤严重者,还请及时就医 。'
s2 = u'8月28日,网络爆料称,华住集团旗下连锁酒店用户数据疑似发生泄露。从卖家发布的内容看,数据包含华住旗下汉庭、禧玥、桔子、宜必思等10余个品牌酒店的住客信息。泄露的信息包括华住官网注册资料、酒店入住登记的身份信息及酒店开房记录,住客姓名、手机号、邮箱、身份证号、登录账号密码等。卖家对这个约5亿条数据打包出售。第三方安全平台威胁猎人对信息出售者提供的三万条数据进行验证,认为数据真实性非常高。当天下午,华住集 团发声明称,已在内部迅速开展核查,并第一时间报警。当晚,上海警方消息称,接到华住集团报案,警方已经介入调查。'
class Evaluate(Callback):
def __init__(self):
self.lowest = 1e10
def on_epoch_end(self, epoch, logs=None):
# 训练过程中观察一两个例子,显示标题质量提高的过程
print gen_sent(s1)
print gen_sent(s2)
# 保存最优结果
if logs['loss'] <= self.lowest:
self.lowest = logs['loss']
model.save_weights('./best_model.weights')
evaluator = Evaluate()
model.fit_generator(data_generator(),
steps_per_epoch=1000,
epochs=epochs,
callbacks=[evaluator])