-
Notifications
You must be signed in to change notification settings - Fork 1
/
sem_unstamped_typing.v
481 lines (408 loc) · 16.9 KB
/
sem_unstamped_typing.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
(** * Unstamped semantic judgments, adequacy, and typing lemmas. *)
From D Require Export iris_prelude swap_later_impl.
From D.pure_program_logic Require Import weakestpre adequacy.
From D Require Import iris_extra.det_reduction.
From D.Dot Require Import skeleton path_repl typing_aux_defs.
From D.Dot Require Import unary_lr.
From D.Dot Require Import later_sub_sem binding_lr path_repl_lr defs_lr dsub_lr prims_lr.
From D.Dot Require Import binding_lr_syn path_repl_lr_syn prims_lr_syn later_sub_syn.
From stdpp Require Import relations.
(* Fix what is in scope. *)
Import stdpp.relations stdpp.tactics D.prelude dlang_adequacy.
Implicit Types (Σ : gFunctors)
(v w : vl) (e : tm) (d : dm) (ds : dms) (p : path)
(ρ : env) (l : label).
Section unstamped_judgs.
Context `{!dlangG Σ}.
(* Semantic, Unstamped, Expression TyPing *)
Definition suetp e_u Γ T : iProp Σ :=
<PB> ∃ e_s, ⌜ same_skel_tm e_u e_s⌝ ∧ Γ s⊨ e_s : T.
Definition sudstp ds_u Γ T : iProp Σ :=
<PB> ∃ ds_s, ⌜ same_skel_dms ds_u ds_s⌝ ∧ Γ s⊨ds ds_s : T.
Definition sudtp l d_u Γ T : iProp Σ :=
<PB> ∃ d_s, ⌜ same_skel_dm d_u d_s⌝ ∧ Γ s⊨ { l := d_s } : T.
Definition iuetp Γ T e := suetp e V⟦Γ⟧* V⟦T⟧.
Definition iudstp Γ T ds := sudstp ds V⟦Γ⟧* C⟦T⟧.
Definition iudtp Γ T l d := sudtp l d V⟦Γ⟧* C⟦T⟧.
Arguments suetp : simpl never.
Arguments sudstp : simpl never.
Arguments sudtp : simpl never.
Arguments iuetp : simpl never.
Arguments iudstp : simpl never.
Arguments iudtp : simpl never.
End unstamped_judgs.
#[global] Instance : Params (@suetp) 3 := {}.
#[global] Instance : Params (@sudstp) 3 := {}.
#[global] Instance : Params (@sudtp) 4 := {}.
Ltac rw ::= rewrite /iuetp /ietp /iudstp /idstp /iudtp /idtp /iptp /istpd ?lr.
Section unstamped_judgs_proper.
Context `{!dlangG Σ}.
#[global] Instance suetp_proper e : Proper2 (suetp e).
Proof. rewrite /suetp => ??????. by repeat f_equiv. Qed.
#[global] Instance sudstp_proper ds : Proper2 (sudstp ds).
Proof. rewrite /sudstp => ??????; by repeat f_equiv. Qed.
#[global] Instance sudtp_proper l d : Proper2 (sudtp l d).
Proof. rewrite /sudtp => ??????. by repeat f_equiv. Qed.
End unstamped_judgs_proper.
Notation "Γ su⊨ e : T" := (suetp e Γ T) (at level 74, e, T at next level).
Notation "Γ su⊨ { l := d } : T" := (sudtp l d Γ T) (at level 64, d, l, T at next level).
Notation "Γ su⊨ds ds : T" := (sudstp ds Γ T) (at level 74, ds, T at next level).
Notation "Γ u⊨ { l := d } : T" := (iudtp Γ T l d) (at level 74, d, l, T at next level).
Notation "Γ u⊨ds ds : T" := (iudstp Γ T ds) (at level 74, ds, T at next level).
Notation "Γ u⊨ e : T" := (iuetp Γ T e) (at level 74, e, T at next level).
Theorem unstamped_s_safety_dot_sem
Σ `{HdlangG : !dlangG Σ} `{HswapProp : !SwapPropI Σ}
{e_u}
(τ : ∀ `{!dlangG Σ}, olty Σ)
(Hwp : ∀ `{!dlangG Σ} `(!SwapPropI Σ), ⊢ [] su⊨ e_u : τ) :
safe e_u.
Proof.
intros e_u' [n Hsteps]%rtc_nsteps_1.
apply (soundness (M := iResUR Σ) _ n).
apply (bupd_plain_soundness _).
iDestruct (Hwp HdlangG HswapProp) as "#>#(%e_s & %Hsim & -#Hwp)".
iSpecialize ("Hwp" $! ids with "[//]"); rewrite hsubst_id /=.
iMod (wptp_safe_n n with "Hwp") as "Hwp".
iIntros "!>!>"; iRevert "Hwp"; iIntros "!% %Hsafe".
eapply same_skel_safe_n_impl, Hsteps; naive_solver.
Qed.
(** ** Adequacy of unstamped semantic typing (Theorem 5.4).
semantically well-typed terms are safe. *)
Corollary unstamped_safety_dot_sem Σ `{HdlangG : !dlangG Σ} `{!SwapPropI Σ}
{e T}
(Hlog : ∀ `(!dlangG Σ) `(!SwapPropI Σ), ⊢ [] u⊨ e : T) :
safe e.
Proof. exact: (unstamped_s_safety_dot_sem Σ (λ _, V⟦T⟧)). Qed.
Lemma same_skel_dms_hasnt ds ds' l : dms_hasnt ds l → same_skel_dms ds ds' → dms_hasnt ds' l.
Proof.
rewrite /dms_hasnt; elim: ds ds' => [| [s d] ds IH] [|[s' d'] ds'] //= ? [<-{s'} ?].
case_match; naive_solver.
Qed.
#[local] Hint Resolve same_skel_dms_hasnt : core.
Definition coveringσ `{!dlangG Σ} σ (T : olty Σ) : Prop :=
∀ args ρ, T args ρ ≡ T args (∞ σ.|[ρ]).
Section coveringσ_intro_lemmas.
Context `{!dlangG Σ}.
Lemma nclosed_syn_coveringσ {n} {T : ty} (Hcl : nclosed T n) :
coveringσ (idsσ n) V⟦T⟧.
Proof.
move=> args ρ v /=.
by rewrite -interp_commute_finsubst_cl ?length_idsσ // closed_subst_idsρ.
Qed.
(* Maybe hard to use in general; [nclosed] requires equality on the nose? *)
Lemma nclosed_sem_coveringσ {n} {T : olty Σ} (Hcl : nclosed T n) :
coveringσ (idsσ n) T.
Proof.
move=> args ρ v.
by rewrite -olty_finsubst_commute_cl ?length_idsσ // closed_subst_idsρ.
Qed.
Lemma coveringσ_shift σ (T : olty Σ) :
coveringσ σ T → coveringσ (push_var σ) (shift T).
Proof.
move => + args ρ => /(_ args (stail ρ)) HclT.
rewrite /= !olty_weaken_one vls_subst_fold hsubst_comp stail_eq.
apply HclT.
Qed.
End coveringσ_intro_lemmas.
Section tmem_unstamped_lemmas.
Context `{!dlangG Σ}.
Lemma leadsto_envD_equiv_alloc {σ} {T : olty Σ}
(Hcl : coveringσ σ T) : ⊢ |==> ∃ s, s ↝[ σ ] T.
Proof.
iMod (saved_ho_sem_type_alloc T) as (s) "#Hs"; iIntros "!>".
iExists s, T; iFrame "Hs"; iIntros "!%". apply Hcl.
Qed.
Lemma leadsto_envD_equiv_alloc_shift {σ} {T : olty Σ} :
coveringσ σ T →
⊢ |==> ∃ s, s ↝[ push_var σ ] shift T.
Proof. intros Hcl; apply leadsto_envD_equiv_alloc, coveringσ_shift, Hcl. Qed.
Lemma suD_Typ_Gen {l Γ fakeT s σ} {T : olty Σ} :
s ↝[ σ ] T -∗ Γ su⊨ { l := dtysyn fakeT } : cTMem l (oLater T) (oLater T).
Proof.
pupd; iIntros "#Hs !>". iExists (dtysem σ s).
iSplit; first done; iApply (sD_Typ with "Hs").
Qed.
Lemma suD_Typ {l σ Γ fakeT} {T : olty Σ} (HclT : coveringσ σ T) :
⊢ Γ su⊨ { l := dtysyn fakeT } : cTMem l (oLater T) (oLater T).
Proof.
iModIntro.
iMod (leadsto_envD_equiv_alloc HclT) as (s) "#Hs".
iApply (suD_Typ_Gen with "Hs").
Qed.
(** Unstamped typing only asserts that the subject _bisimulates_ a
semantically typed stamped value, so type definitions in the subject are
ignored. *)
Lemma sudtp_respects_skel_sym {Γ l d1 d2 T}
(Hsk : same_skel_dm d1 d2) :
Γ su⊨ { l := d1 } : T -∗
Γ su⊨ { l := d2 } : T.
Proof.
pupd; iIntros "#(%d1s & %Hsk1 & H1) !>".
iExists d1s; iSplit; last done; iIntros "!%".
apply /same_skel_trans_dm /Hsk1 /same_skel_symm_dm /Hsk.
Qed.
Lemma suD_Typ_Stp {Γ} L1 L2 U1 U2 d l :
Γ s⊨ L2 <:[0] L1 -∗
Γ s⊨ U1 <:[0] U2 -∗
Γ su⊨ { l := d } : cTMem l L1 U1 -∗
Γ su⊨ { l := d } : cTMem l L2 U2.
Proof.
pupd; iIntros "#Hsub1 #Hsub2 #(%d1s & %Hsk1 & H1) !>".
by iExists d1s; iSplit; last iApply (sD_Typ_Stp with "Hsub1 Hsub2 H1").
Qed.
Lemma suD_Typ_Abs {l σ Γ L T U} fakeT (HclT : coveringσ σ T) :
Γ s⊨ L <:[0] oLater T -∗
Γ s⊨ oLater T <:[0] U -∗
Γ su⊨ { l := dtysyn fakeT } : cTMem l L U.
Proof.
by iIntros "H1 H2"; iApply (suD_Typ_Stp with "H1 H2"); iApply suD_Typ.
Qed.
Lemma uD_Typ_Abs {l n Γ L T U} fakeT (HclT : nclosed T n) :
Γ ⊨ L <:[0] TLater T -∗
Γ ⊨ TLater T <:[0] U -∗
Γ u⊨ { l := dtysyn fakeT } : TTMem l L U.
Proof. have := !!nclosed_syn_coveringσ HclT. rw. apply suD_Typ_Abs. Qed.
Lemma uD_Typ {l n Γ T} fakeT (HclT : nclosed T n) :
⊢ Γ u⊨ { l := dtysyn fakeT } : TTMem l (TLater T) (TLater T).
Proof. have := !!nclosed_syn_coveringσ HclT. rw. apply suD_Typ. Qed.
End tmem_unstamped_lemmas.
Section unstamped_lemmas.
Context `{!dlangG Σ}.
Lemma suT_All_E {Γ e1 e2 T1 T2} :
Γ su⊨ e1 : oAll T1 (shift T2) -∗
Γ su⊨ e2 : T1 -∗
(*────────────────────────────────────────────────────────────*)
Γ su⊨ tapp e1 e2 : T2.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #(%e2s & %Hsk2 & H2) !>".
by iExists (tapp e1s e2s); iSplit; last iApply (sT_All_E with "H1 H2").
Qed.
Lemma uT_All_E {Γ e1 e2 T1 T2} :
Γ u⊨ e1 : TAll T1 (shift T2) -∗ Γ u⊨ e2 : T1 -∗ Γ u⊨ tapp e1 e2 : T2.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #(%e2s & %Hsk2 & H2) !>".
by iExists (tapp e1s e2s); iSplit; last iApply (T_All_E with "H1 H2").
Qed.
Lemma suT_All_E_p {Γ e1 p2 T1 T2} :
Γ su⊨ e1 : oAll T1 T2 -∗
Γ s⊨p p2 : T1, 0 -∗
(*────────────────────────────────────────────────────────────*)
Γ su⊨ tapp e1 (path2tm p2) : T2 .sTp[ p2 /].
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #H2 !>".
by iExists (tapp e1s (path2tm p2)); iSplit; last iApply (sT_All_E_p with "H1 H2").
Qed.
Lemma uT_All_E_p Γ e1 p2 T1 T2 T2' (Hrepl : T2 .Tp[ p2 /]~ T2') :
Γ u⊨ e1 : TAll T1 T2 -∗
Γ ⊨p p2 : T1, 0 -∗
(*────────────────────────────────────────────────────────────*)
Γ u⊨ tapp e1 (path2tm p2) : T2'.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #H2 !>".
by iExists (tapp e1s (path2tm p2)); iSplit; last iApply (T_All_E_p with "H1 H2").
Qed.
Lemma suT_All_Ex {Γ e1 v2 T1 T2} :
Γ su⊨ e1 : oAll T1 T2 -∗
Γ s⊨p pv v2 : T1, 0 -∗
(*────────────────────────────────────────────────────────────*)
Γ su⊨ tapp e1 (tv v2) : T2.|[ v2 /].
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #H2 !>".
iExists (tapp e1s (tv v2)); iSplit; last iApply (sT_All_Ex with "H1").
done.
by iApply (sT_Path (p := pv v2)).
Qed.
Lemma suT_Obj_E {Γ e T l} :
Γ su⊨ e : oVMem l T -∗
Γ su⊨ tproj e l : T.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
by iExists (tproj e1s l); iSplit; last iApply (sT_Obj_E with "H1").
Qed.
Lemma uT_Obj_E {Γ e T l} :
Γ u⊨ e : TVMem l T -∗
Γ u⊨ tproj e l : T.
Proof. rw. apply suT_Obj_E. Qed.
Lemma suT_All_I_Strong {Γ Γ'} T1 T2 e
(Hctx : s⊨G Γ <:* oLater <$> Γ') :
shift T1 :: Γ' su⊨ e : T2 -∗
(*─────────────────────────*)
Γ su⊨ tv (vabs e) : oAll T1 T2.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
by iExists (tv (vabs e1s)); iSplit; last iApply (sT_All_I_Strong with "H1").
Qed.
Lemma uT_All_I_Strong {Γ Γ'} T1 T2 e
(Hctx : ⊨G Γ <:* TLater <$> Γ') :
shift T1 :: Γ' u⊨ e : T2 -∗
Γ u⊨ tv (vabs e) : TAll T1 T2.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
by iExists (tv (vabs e1s)); iSplit; last iApply (T_All_I_Strong with "H1").
Qed.
Lemma suT_All_I {Γ} T1 T2 e :
shift T1 :: Γ su⊨ e : T2 -∗
(*─────────────────────────*)
Γ su⊨ tv (vabs e) : oAll T1 T2.
Proof.
apply suT_All_I_Strong => ρ. rewrite senv_TLater_commute. by iIntros "$".
Qed.
Lemma suT_Skip Γ e T :
Γ su⊨ e : oLater T -∗
Γ su⊨ tskip e : T.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
by iExists (tskip e1s); iSplit; last iApply (sT_Skip with "H1").
Qed.
Lemma uT_Skip Γ e T :
Γ u⊨ e : TLater T -∗
Γ u⊨ tskip e : T.
Proof. rw. apply suT_Skip. Qed.
Lemma suT_Sub {Γ e T1 T2} :
Γ su⊨ e : T1 -∗
Γ s⊨ T1 <:[0] T2 -∗
Γ su⊨ e : T2.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #H2 !>".
by iExists e1s; iSplit; last iApply (sT_Sub with "H1 H2").
Qed.
Lemma uT_Sub {Γ e T1 T2} :
Γ u⊨ e : T1 -∗
Γ ⊨ T1 <:[0] T2 -∗
Γ u⊨ e : T2.
Proof. apply suT_Sub. Qed.
Lemma suT_Obj_I (Γ : sCtx Σ) (T : clty Σ) ds :
oLater T :: Γ su⊨ds ds : T -∗
Γ su⊨ tv (vobj ds) : oMu T.
Proof.
pupd; iIntros "#(%ds1s & %Hsk1 & H1) !>".
by iExists (tv (vobj ds1s)); iSplit; last iApply (sT_Obj_I with "H1").
Qed.
Lemma uT_Obj_I Γ T ds :
TLater T :: Γ u⊨ds ds : T -∗
Γ u⊨ tv (vobj ds) : TMu T.
Proof. rw. apply suT_Obj_I. Qed.
Lemma suT_Path Γ τ p :
Γ s⊨p p : τ, 0 -∗ Γ su⊨ path2tm p : τ.
Proof.
pupd; iIntros "#H1 !>".
by iExists (path2tm p); iSplit; last iApply (sT_Path with "H1").
Qed.
(* Primitives *)
Lemma suT_Un Γ u e1 B1 Br (Hu : un_op_semtype u B1 Br) :
Γ su⊨ e1 : oPrim B1 -∗
Γ su⊨ tun u e1 : oPrim Br.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
by iExists (tun u e1s); iSplit; last iApply (sT_Un with "H1").
Qed.
Lemma uT_Un Γ u e1 B1 Br (Hu : un_op_syntype u B1 Br) :
Γ u⊨ e1 : TPrim B1 -∗
Γ u⊨ tun u e1 : TPrim Br.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
by iExists (tun u e1s); iSplit; last iApply (T_Un with "H1").
Qed.
Lemma suT_Bin Γ b e1 e2 B1 B2 Br (Hu : bin_op_semtype b B1 B2 Br (const (const True))) :
Γ su⊨ e1 : oPrim B1 -∗
Γ su⊨ e2 : oPrim B2 -∗
Γ su⊨ tbin b e1 e2 : oPrim Br.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #(%e2s & %Hsk2 & H2) !>".
by iExists (tbin b e1s e2s); iSplit; last iApply (sT_Bin with "H1 H2").
Qed.
Lemma uT_Bin Γ b e1 e2 B1 B2 Br (Hu : bin_op_syntype b B1 B2 Br) :
Γ u⊨ e1 : TPrim B1 -∗
Γ u⊨ e2 : TPrim B2 -∗
Γ u⊨ tbin b e1 e2 : TPrim Br.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #(%e2s & %Hsk2 & H2) !>".
by iExists (tbin b e1s e2s); iSplit; last iApply (T_Bin with "H1 H2").
Qed.
Lemma suT_If Γ e1 e2 e3 T :
Γ su⊨ e1 : oBool -∗ Γ su⊨ e2 : T -∗ Γ su⊨ e3 : T -∗
Γ su⊨ tif e1 e2 e3 : T.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) #(%e2s & %Hsk2 & H2) #(%e3s & %Hsk3 & H3) !>".
by iExists (tif e1s e2s e3s); iSplit; last iApply (sT_If with "H1 H2 H3").
Qed.
Lemma uT_If Γ e1 e2 e3 T :
Γ u⊨ e1 : TBool -∗ Γ u⊨ e2 : T -∗ Γ u⊨ e3 : T -∗
Γ u⊨ tif e1 e2 e3 : T.
Proof. rw. apply suT_If. Qed.
Lemma suD_Nil Γ : ⊢ Γ su⊨ds [] : cTop.
Proof. iExists []. by rewrite -sD_Nil. Qed.
Lemma uD_Nil Γ : ⊢ Γ u⊨ds [] : TTop.
Proof. rw. apply suD_Nil. Qed.
Lemma suD_Cons Γ d1 ds2 l (T1 T2 : cltyO Σ)
(Hlds : dms_hasnt ds2 l) :
Γ su⊨ { l := d1 } : T1 -∗ Γ su⊨ds ds2 : T2 -∗
Γ su⊨ds (l, d1) :: ds2 : cAnd T1 T2.
Proof.
pupd; iIntros "#(%d1s & %Hsk1 & H1) #(%ds2s & %Hsk2 & H2) !>".
iExists ((l, d1s) :: ds2s); iSplit; last iApply (sD_Cons with "H1 H2");
naive_solver.
Qed.
Lemma uD_Cons Γ d1 ds2 l T1 T2
(Hlds : dms_hasnt ds2 l) :
Γ u⊨ { l := d1 } : T1 -∗ Γ u⊨ds ds2 : T2 -∗
Γ u⊨ds (l, d1) :: ds2 : TAnd T1 T2.
Proof. rw. exact: suD_Cons. Qed.
Lemma suD_Sing Γ d l (T : cltyO Σ) :
Γ su⊨ { l := d } : T -∗ Γ su⊨ds [(l, d)] : cAnd T cTop.
Proof.
pupd; iIntros "#(%d1s & %Hsk1 & H1) !>".
by iExists [(l, d1s)]; iSplit; last iApply (sD_Sing with "H1").
Qed.
Lemma uD_Sing Γ d l T :
Γ u⊨ { l := d } : T -∗ Γ u⊨ds [(l, d)] : TAnd T TTop.
Proof. rw. apply suD_Sing. Qed.
Lemma suD_Val {Γ} T v1 l :
Γ su⊨ tv v1 : T -∗
Γ su⊨ { l := dpt (pv v1) } : cVMem l T.
Proof.
pupd; iIntros "#(%e1s & %Hsk1 & H1) !>".
destruct (same_skel_tv_tv Hsk1) as [v1s ->].
by iExists (dpt (pv v1s)); iSplit; last iApply (sD_Val with "H1").
Qed.
Lemma uD_Val {Γ} T v1 l :
Γ u⊨ tv v1 : T -∗
Γ u⊨ { l := dpt (pv v1) } : TVMem l T.
Proof. rw. apply suD_Val. Qed.
Lemma suD_Path {Γ} T p l :
Γ s⊨p p : T, 0 -∗
Γ su⊨ { l := dpt p } : cVMem l T.
Proof.
pupd; iIntros "#H1 !>".
by iExists (dpt p); iSplit; last iApply (sD_Path with "H1").
Qed.
Lemma uD_Path {Γ} T p l :
Γ ⊨p p : T, 0 -∗
Γ u⊨ { l := dpt p } : TVMem l T.
Proof. rw. apply suD_Path. Qed.
Lemma suD_Val_New {Γ l ds} {T : clty Σ} :
oAnd (oLater T) (oSing (pself (pv (ids 1)) l)) :: Γ su⊨ds ds : T -∗
Γ su⊨ { l := dpt (pv (vobj ds)) } : cVMem l (oMu T).
Proof.
pupd; iIntros "#(%ds1s & %Hsk1 & H1) !>".
by iExists (dpt (pv (vobj ds1s))); iSplit; last iApply (sD_Val_New with "H1").
Qed.
Lemma uD_Val_New {Γ l ds} T :
TAnd (TLater T) (TSing (pself (pv (ids 1)) l)) :: Γ u⊨ds ds : T -∗
Γ u⊨ { l := dpt (pv (vobj ds)) } : TVMem l (TMu T).
Proof. rw. apply suD_Val_New. Qed.
Lemma suD_Path_Stp {Γ T1 T2 p1 l} :
Γ s⊨ T1 <:[0] T2 -∗
Γ su⊨ { l := dpt p1 } : cVMem l T1 -∗
Γ su⊨ { l := dpt p1 } : cVMem l T2.
Proof.
pupd; iIntros "#Hsub #(%d1s & %Hsk1 & H1) !>".
destruct (same_skel_dpt_dpt Hsk1) as [p1s ->].
by iExists (dpt p1s); iSplit; last iApply (sD_Path_Stp with "Hsub H1").
Qed.
Lemma uD_Path_Stp {Γ T1 T2 p1 l}:
Γ ⊨ T1 <:[0] T2 -∗
Γ u⊨ { l := dpt p1 } : TVMem l T1 -∗
Γ u⊨ { l := dpt p1 } : TVMem l T2.
Proof. rw. apply suD_Path_Stp. Qed.
End unstamped_lemmas.