-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
293 lines (251 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import datetime
import torch
import os
import argparse
import logging
import time
import torch.distributed as dist
from tqdm import tqdm
import torch.nn as nn
from utils.comm import get_world_size, synchronize, get_rank
from utils.miscellaneous import mkdir, save_config, cfg_node_to_dict
from utils.logger import setup_logger
from utils.metric_logger import MetricLogger
from utils.checkpoint import ColorizationCheckpointer
from utils.qualitative import save_predictions
from cfg import _C as cfg
from models.build_model import build_model
from optimizer.build import make_optimizer, make_lr_scheduler
from data.build import make_data_loader
def reduce_loss_dict(loss_dict):
"""
Reduce the loss dictionary from all processes so that process with rank
0 has the averaged results. Returns a dict with the same fields as
loss_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return loss_dict
with torch.no_grad():
loss_names = []
all_losses = []
for k in sorted(loss_dict.keys()):
loss_names.append(k)
all_losses.append(loss_dict[k])
all_losses = torch.stack(all_losses, dim=0)
dist.reduce(all_losses, dst=0)
if dist.get_rank() == 0:
# only main process gets accumulated, so only divide by
# world_size in this case
all_losses /= world_size
reduced_losses = {k: v for k, v in zip(loss_names, all_losses)}
return reduced_losses
class Trainer:
def __init__(self, cfg, local_rank, distributed, model_to_load='', data_dir=''):
raw_cfg = cfg_node_to_dict(cfg)
self.model = build_model(cfg)
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.optimizer = make_optimizer(cfg, self.model)
self.scheduler = make_lr_scheduler(cfg, self.optimizer)
if distributed:
self.model = torch.nn.parallel.DistributedDataParallel(
self.model, device_ids=[local_rank], output_device=local_rank,
broadcast_buffers=False,
)
self.arguments = {}
self.arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
self.checkpointer = ColorizationCheckpointer(
cfg, self.model, self.optimizer, self.scheduler, output_dir, save_to_disk, model_to_load=model_to_load)
self.extra_checkpoint_data = self.checkpointer.load()
self.arguments.update(self.extra_checkpoint_data)
self.data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=self.arguments["iteration"],
data_dir=data_dir
)
self.test_period = cfg.SOLVER.TEST_PERIOD
if self.test_period != 0:
self.data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed, is_for_period=True)
else:
self.data_loader_val = None
self.checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
if cfg.SOLVER.LOSS == 'L1':
self.loss = nn.L1Loss()
elif cfg.SOLVER.LOSS == 'L2':
self.loss = nn.MSELoss()
else:
raise ValueError("Supporting only L1 and L2 loss, not: ", self.loss)
def train(self):
logger = logging.getLogger("ImgColorization.train")
logger.info("Start training")
meters = MetricLogger(delimiter=" ")
max_iter = len(self.data_loader)
print("number of images", len(self.data_loader.sampler.data_source.ids))
num_images = len(self.data_loader.sampler.data_source.ids)
number_epochs_to_train = cfg.SOLVER.MAX_ITER_EPOCH
if number_epochs_to_train > 0:
max_iter = num_images * number_epochs_to_train // cfg.SOLVER.IMS_PER_BATCH
print("train for ", max_iter, " iterations, i.e. ", number_epochs_to_train, " epochs")
save_after_epochs = True if cfg.SOLVER.CHECKPOINT_PERIOD_EPOCH > 0 else False
start_iter = 0
self.model.train()
start_training_time = time.time()
end = time.time()
for iteration, (images, targets ) in enumerate(self.data_loader, start_iter):
data_time = time.time() - end
iteration = iteration + 1
self.arguments["iteration"] = iteration
images = images.to(self.device)
targets = targets.to(self.device)
predictions = self.model(images)
loss = self.loss(predictions,targets)
loss_dict = {'ownloss':loss}
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
meters.update(loss=losses_reduced, **loss_dict_reduced)
self.optimizer.zero_grad()
losses.backward()
self.optimizer.step()
self.scheduler.step()
batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time)
eta_seconds = meters.time.global_avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if iteration % 20 == 0 or iteration == max_iter:
logger.info(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=self.optimizer.param_groups[0]["lr"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if iteration % self.checkpoint_period == 0 or (
save_after_epochs and
iteration % (num_images * cfg.SOLVER.CHECKPOINT_PERIOD_EPOCH // cfg.SOLVER.IMS_PER_BATCH) == 0):
save_path_append = 'models/' + cfg.DATASETS.TRAIN[0]
if not os.path.exists(save_path_append):
os.makedirs(save_path_append)
print("Created " + save_path_append)
self.checkpointer.save(save_path_append + '/' + cfg.DATASETS.TRAIN[0] + "model_{:07d}".format(iteration),
**self.arguments)
if self.test_period < 0:
self.test_period = num_images // cfg.SOLVER.IMS_PER_BATCH * (-self.test_period)
if self.data_loader_val is not None and self.test_period > 0 and iteration % self.test_period == 0:
self.validate()
if iteration == max_iter:
break
def validate(self):
meters_val = MetricLogger(delimiter=" ")
synchronize()
self.model.eval()
with torch.no_grad():
# Should be one image for each GPU:
for iteration_val, (images_val, targets_val) in enumerate(tqdm(self.data_loader_val)):
images_val = images_val.to(self.device)
targets_val = targets_val.to(self.device)
predictions_val = self.model(images_val)
if cfg.TEST.SAVE_SAMPLE_IMGS:
if cfg.INPUT.COLOR_SPACE == 'RGB':
save_predictions([images_val,targets_val,predictions_val],iteration_val,cfg)
if cfg.INPUT.COLOR_SPACE == 'LAB':
targets_val3channel = torch.cat((images_val,targets_val),dim=1)
predictions_val3channel = torch.cat((images_val,predictions_val),dim=1)
save_predictions([images_val,targets_val3channel,predictions_val3channel],iteration_val,cfg)
loss = self.loss(predictions_val, targets_val)
loss_dict = {'ownloss': loss}
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
meters_val.update(loss=losses_reduced, **loss_dict_reduced)
synchronize()
logger = logging.getLogger("ImgColorization.val")
logger.info("Start validating")
logger.info(
meters_val.delimiter.join(
[
"[Validation]: ",
"{meters}",
"lr: {lr:.6f}",
"max mem: {memory:.0f}",
]
).format(
meters=str(meters_val),
lr=self.optimizer.param_groups[0]["lr"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
def main():
parser = argparse.ArgumentParser(description="PyTorch Image Colorization")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--model_to_load",
default="",
help="model to be loaded for evaluation",
)
parser.add_argument(
"--data_dir",
default="",
help="data directory",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
torch.manual_seed(0)
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("ImgColorization", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
# logger.info("Running with config:\n{}".format(cfg))
output_config_path = os.path.join(cfg.OUTPUT_DIR, 'config.yml')
logger.info("Saving config into: {}".format(output_config_path))
# save overloaded model config in the output directory
save_config(cfg, output_config_path)
model = Trainer(cfg, args.local_rank, args.distributed, model_to_load=args.model_to_load, data_dir=args.data_dir)
model.train()
if __name__ == "__main__":
main()