forked from bfsujason/bertalign
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
128 lines (110 loc) · 4.84 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import sys
import numpy as np
from ast import literal_eval
from collections import defaultdict
def score_multiple(gold_list, test_list, value_for_div_by_0=0.0):
# accumulate counts for all gold/test files
pcounts = np.array([0, 0, 0, 0], dtype=np.int32)
rcounts = np.array([0, 0, 0, 0], dtype=np.int32)
for goldalign, testalign in zip(gold_list, test_list):
pcounts += _precision(goldalign=goldalign, testalign=testalign)
# recall is precision with no insertion/deletion and swap args
test_no_del = [(x, y) for x, y in testalign if len(x) and len(y)]
gold_no_del = [(x, y) for x, y in goldalign if len(x) and len(y)]
rcounts += _precision(goldalign=test_no_del, testalign=gold_no_del)
# Compute results
# pcounts: tpstrict,fnstrict,tplax,fnlax
# rcounts: tpstrict,fpstrict,tplax,fplax
if pcounts[0] + pcounts[1] == 0:
pstrict = value_for_div_by_0
else:
pstrict = pcounts[0] / float(pcounts[0] + pcounts[1])
if pcounts[2] + pcounts[3] == 0:
plax = value_for_div_by_0
else:
plax = pcounts[2] / float(pcounts[2] + pcounts[3])
if rcounts[0] + rcounts[1] == 0:
rstrict = value_for_div_by_0
else:
rstrict = rcounts[0] / float(rcounts[0] + rcounts[1])
if rcounts[2] + rcounts[3] == 0:
rlax = value_for_div_by_0
else:
rlax = rcounts[2] / float(rcounts[2] + rcounts[3])
if (pstrict + rstrict) == 0:
fstrict = value_for_div_by_0
else:
fstrict = 2 * (pstrict * rstrict) / (pstrict + rstrict)
if (plax + rlax) == 0:
flax = value_for_div_by_0
else:
flax = 2 * (plax * rlax) / (plax + rlax)
result = dict(recall_strict=rstrict,
recall_lax=rlax,
precision_strict=pstrict,
precision_lax=plax,
f1_strict=fstrict,
f1_lax=flax)
return result
def _precision(goldalign, testalign):
"""
Computes tpstrict, fpstrict, tplax, fplax for gold/test alignments
"""
tpstrict = 0 # true positive strict counter
tplax = 0 # true positive lax counter
fpstrict = 0 # false positive strict counter
fplax = 0 # false positive lax counter
# convert to sets, remove alignments empty on both sides
testalign = set([(tuple(x), tuple(y)) for x, y in testalign if len(x) or len(y)])
goldalign = set([(tuple(x), tuple(y)) for x, y in goldalign if len(x) or len(y)])
# mappings from source test sentence idxs to
# target gold sentence idxs for which the source test sentence
# was found in corresponding source gold alignment
src_id_to_gold_tgt_ids = defaultdict(set)
for gold_src, gold_tgt in goldalign:
for gold_src_id in gold_src:
for gold_tgt_id in gold_tgt:
src_id_to_gold_tgt_ids[gold_src_id].add(gold_tgt_id)
for (test_src, test_target) in testalign:
if (test_src, test_target) == ((), ()):
continue
if (test_src, test_target) in goldalign:
# strict match
tpstrict += 1
tplax += 1
else:
# For anything with partial gold/test overlap on the source,
# see if there is also partial overlap on the gold/test target
# If so, its a lax match
target_ids = set()
for src_test_id in test_src:
for tgt_id in src_id_to_gold_tgt_ids[src_test_id]:
target_ids.add(tgt_id)
if set(test_target).intersection(target_ids):
fpstrict += 1
tplax += 1
else:
fpstrict += 1
fplax += 1
return np.array([tpstrict, fpstrict, tplax, fplax], dtype=np.int32)
def log_final_scores(res):
print(' ---------------------------------', file=sys.stderr)
print('| | Strict | Lax |', file=sys.stderr)
print('| Precision | {precision_strict:.3f} | {precision_lax:.3f} |'.format(**res), file=sys.stderr)
print('| Recall | {recall_strict:.3f} | {recall_lax:.3f} |'.format(**res), file=sys.stderr)
print('| F1 | {f1_strict:.3f} | {f1_lax:.3f} |'.format(**res), file=sys.stderr)
print(' ---------------------------------', file=sys.stderr)
def read_alignments(file):
alignments = []
with open(file, 'rt', encoding="utf-8") as f:
for line in f:
fields = [x.strip() for x in line.split(':') if len(x.strip())]
if len(fields) < 2:
raise Exception('Got line "%s", which does not have at least two ":" separated fields' % line.strip())
try:
src = literal_eval(fields[0])
tgt = literal_eval(fields[1])
except:
raise Exception('Failed to parse line "%s"' % line.strip())
alignments.append((src, tgt))
return alignments