forked from harlanhong/CVPR2022-DaGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
130 lines (107 loc) · 5.64 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import matplotlib
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from time import gmtime, strftime
from shutil import copy
from frames_dataset import FramesDataset
import pdb
# from modules.generator import OcclusionAwareGenerator
import modules.generator as generator
from modules.discriminator import MultiScaleDiscriminator
# from modules.keypoint_detector import KPDetector
import modules.keypoint_detector as KPD
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch
from torch.utils.tensorboard import SummaryWriter
from train import train
# from reconstruction import reconstruction
from animate import animate
import random
import numpy as np
if __name__ == "__main__":
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--mode", default="train", choices=["train", "reconstruction", "animate"])
parser.add_argument("--log_dir", default='log', help="path to log into")
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore")
parser.add_argument("--device_ids", default="0", type=lambda x: list(map(int, x.split(','))),
help="Names of the devices comma separated.")
parser.add_argument("--verbose", dest="verbose", action="store_true", help="Print model architecture")
parser.add_argument("--local_rank", type=int)
parser.add_argument("--use_depth",action='store_true',help='depth mode')
parser.add_argument("--rgbd",action='store_true',help='rgbd mode')
parser.add_argument("--kp_prior",action='store_true',help='use kp_prior in final objective function')
# alter model
parser.add_argument("--generator",required=True,help='the type of genertor')
parser.add_argument("--kp_detector",default='KPDetector',type=str,help='the type of KPDetector')
parser.add_argument("--GFM",default='GeneratorFullModel',help='the type of GeneratorFullModel')
parser.add_argument("--batchsize",type=int, default=-1,help='user defined batchsize')
parser.add_argument("--kp_num",type=int, default=-1,help='user defined keypoint number')
parser.add_argument("--kp_distance",type=int, default=10,help='the weight of kp_distance loss')
parser.add_argument("--depth_constraint",type=int, default=0,help='the weight of depth_constraint loss')
parser.add_argument("--name",type=str,help='user defined model saved name')
parser.set_defaults(verbose=False)
opt = parser.parse_args()
with open(opt.config) as f:
config = yaml.load(f)
if opt.checkpoint is not None:
log_dir = os.path.join(*os.path.split(opt.checkpoint)[:-1])
else:
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0])
log_dir += opt.name
print("Training...")
dist.init_process_group(backend='nccl', init_method='env://')
torch.cuda.set_device(opt.local_rank)
device=torch.device("cuda",opt.local_rank)
config['train_params']['loss_weights']['depth_constraint'] = opt.depth_constraint
config['train_params']['loss_weights']['kp_distance'] = opt.kp_distance
if opt.kp_prior:
config['train_params']['loss_weights']['kp_distance'] = 0
config['train_params']['loss_weights']['kp_prior'] = 10
if opt.batchsize != -1:
config['train_params']['batch_size'] = opt.batchsize
if opt.kp_num != -1:
config['model_params']['common_params']['num_kp'] = opt.kp_num
# create generator
generator = getattr(generator, opt.generator)(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
generator.to(device)
if opt.verbose:
print(generator)
generator= torch.nn.SyncBatchNorm.convert_sync_batchnorm(generator)
# create discriminator
discriminator = MultiScaleDiscriminator(**config['model_params']['discriminator_params'],
**config['model_params']['common_params'])
discriminator.to(device)
if opt.verbose:
print(discriminator)
discriminator= torch.nn.SyncBatchNorm.convert_sync_batchnorm(discriminator)
# create kp_detector
if opt.use_depth:
config['model_params']['common_params']['num_channels'] = 1
if opt.rgbd:
config['model_params']['common_params']['num_channels'] = 4
kp_detector = getattr(KPD, opt.kp_detector)(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
kp_detector.to(device)
if opt.verbose:
print(kp_detector)
kp_detector= torch.nn.SyncBatchNorm.convert_sync_batchnorm(kp_detector)
kp_detector = DDP(kp_detector,device_ids=[opt.local_rank],broadcast_buffers=False)
discriminator = DDP(discriminator,device_ids=[opt.local_rank],broadcast_buffers=False)
generator = DDP(generator,device_ids=[opt.local_rank],broadcast_buffers=False)
dataset = FramesDataset(is_train=(opt.mode == 'train'), **config['dataset_params'])
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))):
copy(opt.config, log_dir)
if not os.path.exists(os.path.join(log_dir,'log')):
os.makedirs(os.path.join(log_dir,'log'))
writer = SummaryWriter(os.path.join(log_dir,'log'))
if opt.mode == 'train':
train(config, generator, discriminator, kp_detector, opt.checkpoint, log_dir, dataset, opt.local_rank,device,opt,writer)