-
Notifications
You must be signed in to change notification settings - Fork 81
/
list.h
331 lines (288 loc) · 8.25 KB
/
list.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
/*
* Circular doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
/**
* INIT_LIST_HEAD - Initialize a list_head structure
* @list: list_head structure to be initialized.
*
* Initializes the list_head to point to itself. If it is a list header,
* the result is an empty list.
*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *entry,
struct list_head *prev,
struct list_head *next)
{
next->prev = entry;
entry->next = next;
entry->prev = prev;
prev->next = entry;
}
/**
* list_add - add a new entry
* @entry: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *entry, struct list_head *head)
{
__list_add(entry, head, head->next);
}
/**
* list_add_tail - add a new entry
* @entry: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *entry,
struct list_head *head)
{
__list_add(entry, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}
/**
* list_move - delete from one list and add as another's head
* @entry: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *entry, struct list_head *head)
{
__list_del(entry->prev, entry->next);
list_add(entry, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @entry: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *entry,
struct list_head *head)
{
__list_del(entry->prev, entry->next);
list_add_tail(entry, head);
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
first->prev = prev;
prev->next = first;
last->next = next;
next->prev = last;
}
/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop counter.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof (*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof (*pos), member))
/*
* Singly linked list implementation.
*/
struct slist_node {
struct slist_node *next;
};
struct slist_head {
struct slist_node first, *last;
};
#define SLIST_HEAD_INIT(name) { { (struct slist_node *)0 }, &(name).first }
#define SLIST_HEAD(name) \
struct slist_head name = SLIST_HEAD_INIT(name)
static inline void INIT_SLIST_HEAD(struct slist_head *list)
{
list->first.next = (struct slist_node *)0;
list->last = &list->first;
}
static inline void slist_add_after(struct slist_node *entry,
struct slist_node *prev,
struct slist_head *list)
{
entry->next = prev->next;
prev->next = entry;
if (!entry->next)
list->last = entry;
}
static inline void slist_add_head(struct slist_node *entry,
struct slist_head *list)
{
slist_add_after(entry, &list->first, list);
}
static inline void slist_add_tail(struct slist_node *entry,
struct slist_head *list)
{
entry->next = (struct slist_node *)0;
list->last->next = entry;
list->last = entry;
}
static inline void slist_del_after(struct slist_node *prev,
struct slist_head *list)
{
prev->next = prev->next->next;
if (!prev->next)
list->last = prev;
}
static inline void slist_del_head(struct slist_head *list)
{
slist_del_after(&list->first, list);
}
static inline int slist_empty(const struct slist_head *list)
{
return !list->first.next;
}
static inline void __slist_splice(const struct slist_head *list,
struct slist_node *prev,
struct slist_head *head)
{
list->last->next = prev->next;
prev->next = list->first.next;
if (!list->last->next)
head->last = list->last;
}
static inline void slist_splice(const struct slist_head *list,
struct slist_node *prev,
struct slist_head *head)
{
if (!slist_empty(list))
__slist_splice(list, prev, head);
}
static inline void slist_splice_init(struct slist_head *list,
struct slist_node *prev,
struct slist_head *head)
{
if (!slist_empty(list)) {
__slist_splice(list, prev, head);
INIT_SLIST_HEAD(list);
}
}
#define slist_entry(ptr, type, member) \
((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
#define slist_for_each(pos, head) \
for (pos = (head)->first.next; pos; pos = pos->next)
#define slist_for_each_safe(pos, prev, head) \
for (prev = &(head)->first, pos = prev->next; pos; \
prev = prev->next == pos ? pos : prev, pos = prev->next)
#define slist_for_each_entry(pos, head, member) \
for (pos = slist_entry((head)->first.next, typeof (*pos), member); \
&pos->member != (struct slist_node *)0; \
pos = slist_entry(pos->member.next, typeof (*pos), member))
#endif